K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

\(x+y\le\frac{x^2+1}{2}+\frac{y^2+1}{2}=\frac{x^2+y^2}{2}+1\)

\(\Rightarrow x^2+y^2\le\frac{x^2+y^2}{2}+1\Leftrightarrow x^2+y^2\le2\Leftrightarrow x^2+1+y^2+1\le4\)

\(\Leftrightarrow2x+2y\le4\Leftrightarrow x+y\le2\)

Dấu = xảy ra khi x=y=1

13 tháng 10 2019

Ta co:

\(x+y\ge x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(\Rightarrow\frac{\left(x+y\right)^2}{2}\le x+y\)

\(\Leftrightarrow x+y\le2\)

Dau '=' xay ra khi \(x=y=1\)

NV
17 tháng 12 2020

Bạn xem lại đề bài, mặc dù bài này giải được ra kết quả cụ thể, nhưng chắc không ai cho đề như vậy cả

Sau khi tính toán thì \(P_{min}=4+2\sqrt{3}\) 

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{6\sqrt{3}-9}}{6};\dfrac{3+\sqrt{6\sqrt{3}-9}}{6}\right)\) và hoán vị

Nhìn thật kinh khủng, chẳng có lý gì cả.

Nếu điều kiện \(x+y=1\) thì biểu thức \(P=\dfrac{a}{x^3+y^3}+\dfrac{b}{xy}\) cần có tỉ lệ \(\dfrac{b}{a}\ge3\) để ra 1 kết quả đẹp mắt và bình thường

Ví dụ có thể cho đề là \(P=\dfrac{1}{3\left(x^3+y^3\right)}+\dfrac{1}{xy}\) hoặc \(P=\dfrac{1}{x^3+y^3}+\dfrac{4}{xy}\) gì đó :)

x = 0, y = 0 x = 4, y = -2 Rồi thay vào ....