cho a và b là 2 số tự nhiên . Giải thik tại sao nếu ( a + b ) chia hết cho m ; và a : m thì b : m
Mn có thể giảng giúp e đc ko ạ ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu A chia hết cho m mà b cũng phải chia hết cho m thì 2 số đều chia hết cho m
Có hiểu Ko em?!
Ko hiểu bảo chị giảng lại nha
1.
Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:
+ Ví dụ 1. Các số 7; 9 và 2.
Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2.
+ Ví dụ 2. Các số 13; 19 và 4.
Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4.
+ Ví dụ 3. Các số 33; 67 và 10.
Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10.
Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán.
Qua bài tập 6 này, ta rút ra nhận xét như sau:
Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng.
Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p.
2.
Vì (a+b)⋮ma+b ⋮ m nên ta có số tự nhiên k (k≠0)k≠0 thỏa mãn a + b = m.k (1)
Tương tự, vì a⋮ma ⋮ m nên ta cũng có số tự nhiên h(h≠0)h≠0 thỏa mãn a = m.h
Thay a = m. h vào (1) ta được: m.h + b = m.k
Suy ra b = m.k – m.h = m.(k – h) (tính chất phân phối của phép nhân với phép trừ).
Mà m⋮mm⋮m nên theo tính chất chia hết của một tích ta có m(k−h)⋮mmk-h ⋮ m
Vậy b⋮m.b ⋮ m.
Do x là số tự nhiên => 2x + 13 > x + 2
=> 3a > 3b
\(\Rightarrow3^a⋮3^b\Leftrightarrow\left(2x+13\right)⋮\left(x+2\right)\)
\(\RightarrowĐPCM\)
\(\left( {a + b} \right)\; \vdots m\)\( \Rightarrow \) Có số tự nhiên k sao cho \(a + b = m.k\).
\(a \vdots m \Rightarrow \) Có số tự nhiên \({k_1}\) sao cho \(a = m.{k_1}\).
\( \Rightarrow m{k_1} + b = mk \Rightarrow b = m.\left( {k - {k_1}} \right)\)
\( \Rightarrow b \vdots m\).
Thầy dạy bọn mày số nguyên tố và hợp số chưa
Bài này tao ko học
Khó nhỉ
Hiểu bài ko
Chế đang ngồi cắn bút
Chán quá lôi văn với GDCD ra làm
Tối nay đi học rồi
Lo quá, vẫn chưa la,f xong bài
\(x\) + 5 ⋮ \(x\) (\(x\) ≠ 0)
5 ⋮ \(x\)
\(x\) \(\in\) Ư(5) = {-5; -1; 1; 5)
TL ;
ta có : a chia hết ho m (1 số tự nhiên bất kì) b cũng chia hết cho m
=> tổng của chúng cũng chia hết cho m : (a+b) chia hết cho m
Vì \(a+b⋮m\)nên ta có số tự nhiên \(k\left(k\ne0\right)\) thỏa mãn \(a+b=m.k\left(1\right)\)
Tương tự, vì nên ta cũng có số tự nhiên \(h\left(h\ne0\right)\)thỏa mãn \(a=m.h\)
Thay \(a=m.h\) vào (1) ta được: \(a.h+b=m.k\)
Suy ra \(b=m.k-m.h=m.\left(k-h\right)\) (tính chất phân phối của phép nhân với phép trừ).
Mà \(m⋮m\)nên theo tính chất chia hết của một tích ta có \(m\left(k-h\right)⋮m\)
Vậy \(b⋮m\)