\(2^{1975}+5^{2010}⋮3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
21975=21974.2=(22)987.2=4987.2
4 đồng dư với 1(mod 3)
=>4987 đồng dư với 1(mod 3)
2 đồng dư với 2(mod 3)
=>21985 đồng dư với 2.1=2(mod 3)
5 đồng dư với 2(mod 3)
=>52010 đồng dư với 22010(mod 3)
22010=(22)1005=41005
4 đồng dư với 1(mod 3)
=>42010 đồng dư với 1(mod 3)
=>52010 đồng dư với 1(mod 3)
=>21975 + 52010 đồng dư với 3(mod 3)
=>21975 + 52010 chia hết cho 3
=>đpcm
Sửa đề:
\(\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{12}\right)\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{4-3-1}{12}\)
\(=\left(\dfrac{1975}{1976}+\dfrac{2010}{2011}+\dfrac{1963}{1968}\right)\times\dfrac{0}{12}\)
\(=0\)
Đề bài là :
Chứng minh rằng : 21975 + 52010 \(⋮\)3 hả ?????
Viết lại đi
1999 * 2010 * ( 0,4 - 3 : 7,5 ) / 1975 * 2000 + 1980
= 1999 * 2010 * ( 0,4 - 0,4 ) / 1975 * 2000 + 1980
= 1999 * 2010 * 0 / 1975 * 2000 + 1980
= 1999 * 0 / 1975 * 2000 + 1980
= 0 / 1975 * 2000 + 1980
= 0
Ta có: \(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{1975}\equiv-1\left(mod3\right)\)
Lại có: \(5^{2010}=\left(5^2\right)^{1005}=25^{1005}\)
Mà \(25\equiv1\left(mod3\right)\)
\(\Rightarrow25^{1005}\equiv1\left(mod3\right)\)
\(\Rightarrow2^{1975}+25^{1005}\equiv0\left(mod3\right)\)
Hay \(2^{1975}+5^{2010}\equiv0\left(mod3\right)\)
\(\Rightarrow2^{1975}+5^{2010}⋮3\left(đpcm\right)\)