Cho A=2+2^2+2^3+2^4+................ +2^100
Hãy chứng tỏ A chia hết cho 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) Cho a = 1 + 2 + 22 + 23 + 24 + ... + 2500
a) Chứng tỏ a chia hết cho bảy
b) Chứng tỏ a chia 15 dư 1
a, a = 1+2+22+23+...+2500
Tổng trên có 501 số hạng nhóm 3 số hạng vào 1 nhóm ta được:
a = (1+2+22)+(23+24+25)+...+(2498+5499+2500)
a = 1(1+2+22)+23(1+2+23)+...+2498(1+2+22)
a = 1.7 + 23.7 +.....+ 2498.7
a = 7.(1+23+...+2498) chia hết cho 7
Ta có : A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
= 2( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
= 2 ( 1 + 2 + 4 ) + 24 ( 1 + 2 + 4 ) + ... + 258 ( 1 + 2 + 4 )
= 2 x 7 + 24 x 7 + ... + 258 x 7
= 7 x ( 2 + 24 + ... + 258 ) chia hết cho 7
chia hết cho 15 tương tự
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15