Chứng minh rằng \(\frac{p^2-1}{24}\) là số nguyên với p là số nguyên tố lớn hơn 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
vậy p + 1 và p - 1 là hai số chẵn.
Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.
đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)
A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1)
Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.
⇒ 4.k.(k + 1) ⋮ 8
⇒ A = (p + 1).(p - 1) ⋮ 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng:
p = 3k + 1; hoặc p = 3k + 2
Xét trường hợp p = 3k + 1 ta có:
p - 1 = 3k + 1 - 1 = 3k ⋮ 3
⇒ A = (p + 1).(p - 1) ⋮ 3 (2)
Từ (1) và (2) ta có:
A ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)
Xét trường hợp p = 3k + 2 ta có
p + 1 = 3k + 2 + 1 = 3k + 3 = 3.(k + 1) ⋮ 3 (3)
Từ (1) và (3) ta có:
A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)
Kết hợp (*) và(**) ta có
A \(⋮\) 24 (đpcm)
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
Goi b la so nghuyen to lon hon 3 chia cho 3 xay ra 3 truong hop truong hop 1:b chia het cho 3 suy ra b khong phai la so nghuyen to (khong duoc) truong hop 2 :b chia cho 3 du 1 (duoc truong hop 3:b cia cho 3 du 2 (duoc)
b) vì p là số nguyên tố>3(gt)
=>p có dạng 3k+1 howacj 3k+2
Nếu p=3k+2
=> p+4=3k+6 ⋮ 3
mà p+4 là số nguyên tố>3(do p>3)
=>p+4=3k+6 không thỏa mãn p+4 là số nguyên tố
Nếu p=3k+1
=> p+4=3k+5 (hợp lí)
vậy p+8 là hợp số
=>p+8=3k+9 ⋮ 3
=>p+8 là hợp số
c)vì p là số nguyên tố>3(gt)
=>p lẻ =>(p-1)(p+1) là tích 2 số chẵn liên tiếp
g/s với kϵN ta có 2k(2k+2)là tích 2 chẵn liên tiếp
2k(2k+2)=4k(k+1)
với kϵN ta có k(k+1)là tích 2 số tự nhiên liên tiếp
=> k(k+1)⋮2
=>4k(k+1)⋮8
=>tích 2 số tự nhiên liên tiếp luôn chia hết cho 8
=>(p-1)(p+1) ⋮ 8 (1)
ta có p-1; p; p+1 là 3 số tự nhiên liên tiếp
=>(p-1)p(p+1)⋮3
mà p là số nguyên tố>3(gt) => p không chia hết cho 3
=> (p-1)(p+1) ⋮ 3 (2)
từ (1),(2) kết hợp với 3; 8 là 2 số nguyên tố cùng nhau
=> (p-1)(p+1) ⋮ (3.8)
=> (p-1)(p+1) ⋮ 24
Ta có: A = n2 - 1 = (n - 1)(n + 1)
Vì n là số nguyên tố lớn hơn 3 nên (n - 1)(n + 1) là tích hai số chẵn liên tiếp => A \(⋮\) 8 (1)
Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)
- Nếu n = 3k + 1 thì:
A = (n - 1)(n + 1) = (3k + 1 - 1)(3k + 1 + 1) = 3k(3k + 2) \(⋮\) 3
- Nếu n = 3k + 2 thì:
A = (n - 1)(n + 1) = (3k + 2 - 1)(3k + 2 + 1) = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮\) 3
Từ hai trường hợp trên ta có A \(⋮\) 3 (2)
Mà (8,3) = 1 (3)
Từ (1),(2),(3) => \(A⋮24\)
TH1: p=3k+1
=>p+2=3k+3(loại)
=>p=3k+2 và p là số lẻ
p+1=3k+3=3(k+1) chia hết cho 3
p là số lẻ
=>p+1 chia hết cho 2
=>p+1 chia hết cho 6
nếu p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 3
p2 không chia hết cho 3 ⇒ p2 không chia hết cho 24;
Vậy không tồn tại số nguyên tố nào thỏa mãn đề bài.
2p - 1 = ( p - 1 ) . ( p + 1 )
p là số nguyên tố lớn hơn 3 => p không chia hết cho 2 ; 3
Ta có : p không chia hết cho 2
=> p - 1 và p + 1 là hai số chẵn liên tiếp => ( p - 1 ) . ( p + 1 ) chia hết cho 8 ( 1 )
Lại mặt khác ta có : p không chia hết cho 3
Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 => ( p - 1 ) . ( p + 1 ) chia hết cho 3
Tương tự ta có : Nếu p = 3k + 2 thì p + 1 = 3k + 3 chia hết cho 3 => ( p - 1 ) . ( p + 1 ) chia hết cho 3 (2)
Từ ( 1 ) và ( 2 ) => 2p - 1 chia hết cho 8 cho 3 mà ( 8; 3 ) = 1 => 2p - 1 chia hết cho .............
Ta có:vì p là số nguyên tố >3 nên p ko chia hết cho 3 nên p^2 chia 3 dư 1 nên p^2-1 chia hết cho 3(1)
Ta lại có:Do p là số nguyên tố nên p chia 8 dư 1;3;5;7 suy ra p^2 chia 8 dư 1 do đó p^2 -1 chia hết cho 8(minh chứng munh rồi)(2)
Mà (3,8)=1(3)
Từ (1),(2) và (3)
Suy ra p^2-1 chia hết cho 24 hay (p^2-1)/24 là số nguyên (đpcm)
Đây là toán lớp 6 mà bạn
Hôm qua mình đi thi hsg trường lớp 9 bài y sì nhe -.-