x^2-2015x+2014=0 hãy tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2015x+2014=0\)
\(x^2-2014x-x+2014=0\)
\(x\left(x-2014\right)-\left(x-2014\right)=0\)
\(\left(x-2014\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2014=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2014\\x=1\end{cases}}}\)
\(x^2-2015x+2014\)\(=0\)
\(\Rightarrow x^2-x-2014x+2014\)\(=0\)
\(\Rightarrow x\left(x-1\right)-2014\left(x-1\right)\)\(=0\)
\(\Rightarrow\left(x-1\right)\left(x-2014\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2014=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2014\end{cases}}\)
x^4-2014x^2+2015x-2014=0
<=>x4+x-2014x2+2014x-2014=0
<=>x.(x3+1)-2014.(x2-x+1)=0
<=>x.(x+1)(x2-x+1)-2014.(x2-x+1)=0
<=>(x2+x+1)[x.(x+1)-2014]=0
<=>x.(x+1)-2014=0 (vì x2+x+1 >0)
giải tiếp sao số xấu thế
Nhận xét: Tổng các hệ số của phương trình bằng 0 => phương trình có 1 nghiệm là 1
=> vế trái có nhân tử (x - 1)
pt <=> (x4 - 1 ) + (2015x3 - 2015x2) - (2015x - 2015) = 0
<=> (x-1)(x+1).(x2 + 1) + 2015x2(x - 1) - 2015.(x - 1) = 0
<=> (x - 1).[(x+1).(x2 + 1) + 2015x2 - 2015] = 0
<=> (x -1). [(x+1).(x2 + 1) + 2015(x2 - 1)] = 0
<=> (x -1). [(x+1).(x2 + 1) + 2015(x - 1)(x+1)] = 0
<=> (x -1).(x+1).(x2 + 1 + 2015x - 2015 ) = 0
<=> x - 1 = 0 hoặc x+ 1 = 0 hoặc x2 + 1 + 2015x - 2015 = 0
+) x - 1 = 0 <=> x = 1
+) x + 1 = 0 <=> x = -1
+) x2 + 1 + 2015x - 2015 = 0 <=> x2 + 2015x - 2014 = 0
<=> x2 +2.x. \(\frac{2015}{2}\) + \(\left(\frac{2015}{2}\right)^2\) - \(\left(\frac{2015}{2}\right)^2\) - 2015 = 0
<=> \(\left(x-\frac{2015}{2}\right)^2=\frac{2015^2+4030}{2}\)
<=> \(x-\frac{2015}{2}=\sqrt{\frac{2015^2+4030}{2}}\) hoặc \(x-\frac{2015}{2}=-\sqrt{\frac{2015^2+4030}{2}}\)
<=> \(x=\frac{2015}{2}+\sqrt{\frac{2015^2+4030}{2}}\)hoặc \(x=\frac{2015}{2}-\sqrt{\frac{2015^2+4030}{2}}\)
Vậy pt có 4 nghiệm...
chính xác nè bạn nhớ sai ruj:
x4+2015x2+2014x+2015=0
<=>x4-x+2015x2+2015x+2015=0
<=>x(x3-1)+2015(x2+x+1)=0
<=>x(x-1)(x2+x+1)+2015(x2+x+1)=0
<=>(x2+x+1)[x(x-1)-2015]=0
<=>(x2+x+1)(x2-x-2015)=0
<=>x2+x+1=0 hoặc x2-x-2015=0
*x2+\(2x.\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=0
<=>(x+1/2)2+3/4=0(vô lí)
*x2-\(2x.\frac{1}{2}+\frac{1}{4}-\frac{8061}{4}\)
<=>(x-1/2)2-8061/4=0
<=>(x-1/2)2 =8061/4
<=>x-1/2 =\(\sqrt{\frac{8061}{4}}\)
<=>x =\(\sqrt{\frac{8061}{4}+}\frac{1}{2}\)
\(x^2-2015x+2014=0\)
\(x^2-x-2014x+2014=0\)
\(x\left(x-1\right)-2014\left(x-1\right)=0\)
\(\left(x-1\right)\left(x-2014\right)=0\)
TH1:x -1 = 0
=>x=1
TH2 : x-2014=0
=> x=2014
\(x^3-4x=0\)
\(x\left(x^2-4\right)=0\)
\(x\left(x-4\right)\left(x+4\right)=0\)
TH1: x=0
TH2:x-4=0
=> x= 4
TH3: x+4=0
=> x=(-4)
Hok tốt
\(|2015x-2014|=|2015x+2014|\)
\(\Leftrightarrow\orbr{\begin{cases}-2015x+2014=|2015x+2014|\left(l\right)\\2015x-2014=|2015x+2014|\left(n\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2015x+2014=-2015x+2014\\2015x+2014=2015x-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}4030x=0\\0x=-4028\left(l\right)\end{cases}\Leftrightarrow}4030x=0\Leftrightarrow x=0}\)
P(x) = x2016 - 2015x2015 - 2015x2014 - ... - 2015x2 - 2015x
<=> P(x) = x2016 - 2016x2015 + x2015 - 2016x2014 + x2014 - ... - 2016x2 + x2 - 2016x + x
<=> P(2016) = 20162016 - 2016.20162015 + 20162015 - 2016.20162014 + 20162014 -...- 2016.20162 + 20162 - 2016.2016 + 2016
<=> P(2016)=20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ... - 20163 + 20162 - 20162 + 2016
<=> P(2016) = 2016
Vậy P(2016) = 2016
Ta có:
P(2016) = 20162016 - 2015 . 20162015 - 2015 . 20162014 -.....- 2015 . 20162 - 2015 . 2016 - 1
P(2016) = 20162016 - ( 2016 - 1 ) . 20162015 - ( 2016 -1 ) . 20162014 - ..... - ( 2016 - 1 ) . 20162 - ( 2016 - 1 ) . 2016 - 1
P(2016)= 20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ..... - 20163 + 20162 - 20162 + 2016 - 1
P(2016) = 2016 - 1
P(2016) = 2015.
<=>(x2-x)-(2015x-2014)=0
<=>x(x-1)-2014(x-1)=0
<=>(x-2014)(x-1)
<=>x-2014=0
hoặc x-1=0
<=>x=2014
hoặc x=1
h
\(x^2-2015x+2014=0\)
\(\Leftrightarrow x^2-2014x-x+2014=0\)
\(\Leftrightarrow x\left(x-2014\right)-\left(x-2014\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2014\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2014=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2014\end{cases}}\)