K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

x-1=căn x+3

x^2-2x+1=x+3

x^2-3x-2=0

(x-1)(x-2)=0

x=1 hoặc x=2

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

a.

$x^2-11=0$

$\Leftrightarrow x^2=11$

$\Leftrightarrow x=\pm \sqrt{11}$

b. $x^2-12x+52=0$

$\Leftrightarrow (x^2-12x+36)+16=0$

$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)

Vậy pt vô nghiệm.

c.

$x^2-3x-28=0$

$\Leftrightarrow x^2+4x-7x-28=0$

$\Leftrightarrow x(x+4)-7(x+4)=0$

$\Leftrightarrow (x+4)(x-7)=0$

$\Leftrightarrow x+4=0$ hoặc $x-7=0$

$\Leftrightarrow x=-4$ hoặc $x=7$

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

d.

$x^2-11x+38=0$

$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$

$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)

Vậy pt vô nghiệm

e.

$6x^2+71x+175=0$

$\Leftrightarrow 6x^2+21x+50x+175=0$

$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$

$\Leftrightarrow (3x+25)(2x+7)=0$

$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$

$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$

18 tháng 10 2021

\(Q=\dfrac{\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x-1-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ Q=\dfrac{-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ Q=\dfrac{-6\sqrt{x}+1+8\sqrt{x}+24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\\ Q=\dfrac{2\sqrt{x}+25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

1 tháng 8 2023

a) \(A=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)

\(A=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)

\(A=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

b) \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)

\(B=\dfrac{\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)

c) \(C=\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)

\(C=\dfrac{-\left(2a-3\sqrt{a}+1\right)}{\left(2\sqrt{a}\right)^2-2\sqrt{a}\cdot2\cdot1+1^2}\)

\(C=\dfrac{-\left(\sqrt{a}-1\right)\left(2\sqrt{a}-1\right)}{\left(2\sqrt{a}-1\right)^2}\)

\(C=\dfrac{-\sqrt{a}+1}{2\sqrt{a}-1}\)

d) \(D=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)

\(D=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}\)

\(D=\sqrt{a}+2-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)

\(D=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)\)

\(D=0\)

26 tháng 8 2021

undefined

26 tháng 8 2021

undefined

15 tháng 7 2023

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

a: =>2sin(x+pi/3)=-1

=>sin(x+pi/3)=-1/2

=>x+pi/3=-pi/6+k2pi hoặc x+pi/3=7/6pi+k2pi

=>x=-1/2pi+k2pi hoặc x=2/3pi+k2pi

b: =>2sin(x-30 độ)=-1

=>sin(x-30 độ)=-1/2

=>x-30 độ=-30 độ+k*360 độ hoặc x-30 độ=180 độ+30 độ+k*360 độ

=>x=k*360 độ hoặc x=240 độ+k*360 độ

c: =>2sin(x-pi/6)=-căn 3

=>sin(x-pi/6)=-căn 3/2

=>x-pi/6=-pi/3+k2pi hoặc x-pi/6=4/3pi+k2pi

=>x=-1/6pi+k2pi hoặc x=3/2pi+k2pi

d: =>2sin(x+10 độ)=-căn 3

=>sin(x+10 độ)=-căn 3/2

=>x+10 độ=-60 độ+k*360 độ hoặc x+10 độ=240 độ+k*360 độ

=>x=-70 độ+k*360 độ hoặc x=230 độ+k*360 độ

e: \(\Leftrightarrow2\cdot sin\left(x-15^0\right)=-\sqrt{2}\)

=>\(sin\left(x-15^0\right)=-\dfrac{\sqrt{2}}{2}\)

=>x-15 độ=-45 độ+k*360 độ hoặc x-15 độ=225 độ+k*360 độ

=>x=-30 độ+k*360 độ hoặc x=240 độ+k*360 độ

f: \(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=-\dfrac{1}{\sqrt{2}}\)

=>x-pi/3=-pi/4+k2pi hoặc x-pi/3=5/4pi+k2pi

=>x=pi/12+k2pi hoặc x=19/12pi+k2pi

12 tháng 9 2023

g) \(3+\sqrt[]{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=-\dfrac{3}{\sqrt[]{5}}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin\left[arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)\right]\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\\x+\dfrac{\pi}{3}=\pi-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)

h) \(1+sin\left(x-30^o\right)=0\)

\(\Leftrightarrow sin\left(x-30^o\right)=-1\)

\(\Leftrightarrow sin\left(x-30^o\right)=sin\left(-90^o\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-30^o=-90^0+k360^o\\x-30^o=180^o+90^0+k360^o\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^o\\x=300^0+k360^o\end{matrix}\right.\)

\(\Leftrightarrow x=-60^0+k360^o\)

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

1. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{x-1}=5-\sqrt{x-4}$

$\Rightarrow x-1=25+x-4-10\sqrt{x-4}$

$\Leftrightarrow 22=10\sqrt{x-4}$

$\Leftrightarrow 2,2=\sqrt{x-4}$

$\Leftrightarrow 4,84=x-4\Leftrightarrow x=8,84$

(thỏa mãn)

2. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow (2x-2\sqrt{x})-(5\sqrt{x}-5)=0$

$\Leftrightarrow 2\sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0$

$\Leftrightarrow (\sqrt{x}-1)(2\sqrt{x}-5)=0$

$\Leftrightarrow \sqrt{x}-1=0$ hoặc $2\sqrt{x}-5=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{25}{4}$ (tm)

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

3. ĐKXĐ: $x\geq 3$

Bình phương 2 vế thu được:

$3x-2+2\sqrt{(2x+1)(x-3)}=4x$
$\Leftrightarrow 2\sqrt{(2x+1)(x-3)}=x+2$

$\Leftrightarrow 4(2x+1)(x-3)=(x+2)^2$

$\Leftrightarrow 4(2x^2-5x-3)=x^2+4x+4$
$\Leftrightarrow 7x^2-24x-16=0$

$\Leftrightarrow (x-4)(7x+4)=0$

Do $x\geq 3$ nên $x=4$

Thử lại thấy thỏa mãn

Vậy $x=4$

c: \(\Leftrightarrow x-3=0\)

hay x=3

4 tháng 1 2022

c: ⇔x−3=0⇔x−3=0

hay x=3

a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)

\(\Leftrightarrow7\left|x-1\right|=35\)

\(\Leftrightarrow\left|x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b)

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)

c) ĐKXĐ: \(x\ge0\)

Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(\Leftrightarrow x-1=x+\sqrt{x}-6\)

\(\Leftrightarrow\sqrt{x}-6=-1\)

\(\Leftrightarrow\sqrt{x}=5\)

hay x=25(nhận)

8 tháng 7 2021

 Em cảm ơn ạ ❤️❤️❤️

11 tháng 10 2023

\(a,A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}-3\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(đk:x\ge0;x\ne1\right)\)

\(=\left[\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{3x+3\sqrt{x}-\sqrt{x}+1-3\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\dfrac{3x+2\sqrt{x}+1-3x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2}{\sqrt{x}-1}\)

\(---\)

\(b,A< 0\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)

\(\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow\sqrt{x}< 1\)

\(\Leftrightarrow x< 1\)

Kết hợp với điều kiện của \(x\), ta được:

\(0\le x< 1\)

Vậy: ...

\(Toru\)

11 tháng 10 2023

a) \(A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}-3\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\left[\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{3x+3\sqrt{x}-\sqrt{x}+1-3x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{2\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(A=\dfrac{2}{\sqrt{x}-1}\)

b) \(A< 0\) khi

\(\dfrac{2}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\)

\(\Leftrightarrow\sqrt{x}< 1\)

\(\Leftrightarrow x< 1\)

Kết hợp với đk:

\(0\le x< 1\)