Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|3x+1\right|=\left|x+1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=x+1\\3x+1=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c) \(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)
\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=\sqrt{x^2}\)
\(\Leftrightarrow\left|3x-2\right|=\left|x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=x\\3x-2=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
d) \(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=\sqrt{\left(2x-3\right)^2}\)
\(\Leftrightarrow\left|x+2\right|=\left|2x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-3\\x+2=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)
e) \(\left|x^2-1\right|+\left|x+1\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
f) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)
\(\Leftrightarrow\left|x-4\right|+\left|x+2\right|=0\)
⇒ vô nghiệm
d. (x-3)(x+3)+x(x+5)+6=0
<=> x2+3x-3x-9+x2+5x+6=0
<=> 2x2+5x-3=0
(a=2; b=5; c=-3)
\(\Delta\)=(5)2-4.(2).(-3)
\(\Delta\)=49
\(\Delta\)>0 => phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-\left(5\right)+\sqrt{49}}{2.\left(2\right)}=\frac{1}{2}\)
\(x_2=\frac{-\left(5\right)-\sqrt{49}}{2.\left(2\right)}=-3\)
Vậy phương trình có nghiệm (x1;x2)=(1/2;-3)
e. \(x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)
\(\Leftrightarrow x^2-x-\sqrt{3}x+\sqrt{3}=0\)
\(\Leftrightarrow x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)
(a=1; b= -(1+\(\sqrt{3}\)) ; c=\(\sqrt{3}\))
\(\Delta\)=(-1-\(\sqrt{3}\))2-4.(1).(\(\sqrt{3}\))
\(\Delta\)=\(4-2\sqrt{3}\)
\(\Delta\)>0 => phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-\left(-1-\sqrt{3}\right)+\sqrt{4-2\sqrt{3}}}{2.\left(1\right)}=\sqrt{3}\)
\(x_2=\frac{-\left(-1-\sqrt{3}\right)-\sqrt{4-2\sqrt{3}}}{2.\left(1\right)}=1\)
Vậy phương trình có nghiệm (x1;x2)=(\(\sqrt{3}\);1)
giải các phương trình sau
a. 4x24x2 - 12x - 7=0
\(\bigtriangleup = b^2 -4.a.c\)
\(=(-12)^2 -4.4.(-7) \)
\(= 256\)
Vì \(\bigtriangleup > 0\) nên phương trình có hai nghiệm phân biệt :
\(\)\(x_1 =\dfrac{-b+\sqrt{\bigtriangleup}}{2a} \) \(= \dfrac{-(-12)+ \sqrt{256}}{2.4}\) \(= \dfrac{7}{2}\)
\(x_2 =\dfrac{-b-\sqrt{\bigtriangleup}}{2a} = \) \(\dfrac{-(-12)- \sqrt{256}}{2.4} \) \( = \dfrac{-1}{2}\)
Vậy phương trình có nghiệm \(x_1 =\dfrac{7}{2} ; x_2 = \dfrac{-1}{2}\)
b. x2−4x+2=0x2−4x+2=0
\(\bigtriangleup = b^2 -4.a.c\)\(\bigtriangleup = b^2 -4.a.c\)
= \((-4)^2 -4.1.2\)
= \(8\)
Vì \(\bigtriangleup > 0 \) nên phương trình có hai nghiệm phân biệt :
\(x_1 =\dfrac{-b+\sqrt{\bigtriangleup}}{2a} \) \(= \dfrac{-(-4) + \sqrt{8}}{2.1}\)= \(2+\sqrt{2}\)
\(x_2 =\dfrac{-b-\sqrt{\bigtriangleup}}{2a} = \)\(\dfrac{-(-4) - \sqrt{8}}{2.1}\) \(= 2-\sqrt{2}\)
Vậy phương trình có nghiệm \(x_1 = 2+\sqrt{2} ; x_2 = 2 -\sqrt{2}\)
c. x2−2√3x+2=0x2−23x+2=0
\(\bigtriangleup = b^2 -4.a.c\)\(\bigtriangleup = b^2-4.a.c\)
= \((-2\sqrt{3})^2 - 4.1.2\)
= \(4\)
Vì \(\bigtriangleup > 0 \) nên phương trình có hai nghiệm phân biệt :
\(x_1 =\dfrac{-b+\sqrt{\bigtriangleup}}{2a} \) \( = \dfrac{-(-2\sqrt{3}) + \sqrt{4}}{2.1} \) \(= 1+\sqrt{3}\)
\(x_2 =\dfrac{-b-\sqrt{\bigtriangleup}}{2a} = \) \(\dfrac{-(-2\sqrt{3}) - \sqrt{4}}{2.1} \) \(= -1 +\sqrt{3}\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
\(f,\sqrt{x^2-25}-\sqrt{x-5}=0\)
=> \(\sqrt{x^2-25}=\sqrt{x-5}\)
=>\(x^2-25=x-5\)
=>\(x^2-x=25-5=20\)
=>( đến đoạn này mình xin chịu )
\(a,\sqrt{16x}=8\)
=>\(16x=8^2\)
=>\(16x=64\)
=>\(x=64:16=4\)
Vậy \(x\in\left\{4\right\}\)
\(b,\sqrt{x^2}=2x-1\)
=>\(x=2x-1\)
=>\(2x-x=1\)
=>\(x=1\)
Vậy \(x\in\left\{1\right\}\)
\(c,\sqrt{9.\left(x-1\right)}=21\)
=>\(9.\left(x-1\right)=21^2=441\)
=> \(x-1=441:9=49\)
=>\(x=49+1=50\)
Vậy \(x\in\left\{50\right\}\)
\(d,\sqrt{4\left(1-x\right)^2}-6=0\)
=>\(\sqrt{4\left(1-x\right)^2}=0+6=6\)
=> \(4\left(1-x\right)^2=6^2=36\)
=>\(\left(1-x\right)^2=36:4=9\)
=>\(1-x=\sqrt{9}=3\)
=>\(x=1-3=-2\)
Vậy \(x\in\left\{-2\right\}\)
\(g,\sqrt{9\left(2-3x\right)^2}=6\)
=> \(9.\left(2-3x\right)^2=6^2=36\)
=> \(\left(2-3x\right)^2=36:9=4\)
=> \(2-3x=\sqrt{4}=2\)
=>\(3x=2-2=0\)
=>\(x=0:3=0\)
Vậy \(x\in\left\{0\right\}\)
( còn các bài còn lại mình sẽ nghĩ tiếp , HS6-7 làm bài )
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
a) Phương trình 1,5x2 – 1,6x + 0,1 = 0
Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 = \(\dfrac{0,1}{15}\)
c) \(\left(2-\sqrt{3}\right)x^2+2\sqrt{3x}-\left(2+\sqrt{3}\right)=0\)
Có \(a+b+c=2-\sqrt{3}+2\sqrt{3}-\left(2+\sqrt{3}\right)=0\)
Nên x1 = 1, x2 = \(\dfrac{-\left(2+\sqrt{3}\right)}{2-\sqrt{3}}\) = -(2 + \(\sqrt{3}\))2 = -7 - 4\(\sqrt{3}\)
d) (m – 1)x2 – (2m + 3)x + m + 4 = 0
Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0
Nên x1 = 1, x2 = \(\dfrac{m+4}{m-1}\)
a) Phương trình 1,5x2 – 1,6x + 0,1 = 0
Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 =
b) Phương trình √3x2 – (1 - √3)x – 1 = 0
Có a – b + c = √3 + (1 - √3) + (-1) = 0 nên x1 = -1, x2 = =
c) (2 - √3)x2 + 2√3x – (2 + √3) = 0
Có a + b + c = 2 - √3 + 2√3 – (2 + √3) = 0
Nên x1 = 1, x2 = = -(2 + √3)2 = -7 - 4√3
d) (m – 1)x2 – (2m + 3)x + m + 4 = 0
Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0
Nên x1 = 1, x2 =
\(A=\left(x-2\right)\cdot\sqrt{\dfrac{9}{\left(x-2\right)^2}}+3=\dfrac{3\left(x-2\right)}{\left|x-2\right|}+3=\dfrac{3\left(x-2\right)}{-\left(x-2\right)}=-3+3=0\)
\(B=\sqrt{\dfrac{a}{6}}+\sqrt{\dfrac{2a}{3}}+\sqrt{\dfrac{3a}{2}}=\dfrac{\sqrt{a}}{\sqrt{6}}+\dfrac{\sqrt{2a}}{\sqrt{3}}+\dfrac{\sqrt{3a}}{\sqrt{2}}=\dfrac{\sqrt{a}+2\sqrt{a}+3\sqrt{a}}{\sqrt{6}}=\dfrac{6\sqrt{a}}{\sqrt{6}}=\sqrt{6a}\)
\(E=\sqrt{9a^2}+\sqrt{4a^2}+\sqrt{\left(1-a\right)^2}+\sqrt{16a^2}=3\left|a\right|+2\left|a\right|+\left|1-a\right|+4\left|a\right|=9\left|a\right|+1-a=-9a+1-a=-10a+1\)
\(F=\left|x-2\right|\cdot\dfrac{\sqrt{x^2}}{x}=\left|x-2\right|\cdot\dfrac{\left|x\right|}{x}=\dfrac{x\left(x-2\right)}{x}=x-2\)
\(H=\dfrac{x^2+2\sqrt{3}\cdot x+3}{x^2-3}=\dfrac{\left(x+\sqrt{3}\right)^2}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}=\dfrac{x+\sqrt{3}}{x-\sqrt{3}}\)
\(I=\left|x-\sqrt{\left(x-1\right)^2}\right|-2x=\left|x-\left(-\left(x-1\right)\right)\right|-2x=\left|x+x-1\right|-2x=\left|2x-1\right|-2x=1-4x\)
Bài 1: Giải phương trình
a) ĐKXĐ: \(x\ge3\)
Ta có: \(\sqrt{100\cdot\left(x-3\right)}=\sqrt{20}\)
\(\Leftrightarrow\left|100\cdot\left(x-3\right)\right|=\left|20\right|\)
\(\Leftrightarrow100\cdot\left|x-3\right|=20\)
\(\Leftrightarrow\left|x-3\right|=\frac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\frac{1}{5}\\x-3=-\frac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{16}{5}\left(nhận\right)\\x=\frac{14}{5}\left(loại\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{16}{5}\right\}\)
b) Ta có: \(\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
Vậy: S={10;-4}
c) Ta có: \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5}{2};\frac{-7}{2}\right\}\)
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$