\(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{y^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
2: Thay \(x=\dfrac{1}{2}\) và y=2 vào M, ta được:
\(M=\dfrac{2\cdot\left(\dfrac{1}{2}\right)^2\cdot2-1.2\cdot\left(3\cdot\dfrac{1}{2}-2\cdot2\right)}{\dfrac{1}{2}\cdot2}\)
\(=4\cdot\dfrac{1}{4}-1.2\left(\dfrac{3}{2}-4\right)\)
\(=1-1.8+4.8\)
\(=4\)
1: Ta có: \(\left(-\dfrac{2}{3}x^3y^2\right)z\cdot5xy^2z^2\)
\(=\left(-\dfrac{2}{3}\cdot5\right)\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^2\right)\)
\(=\dfrac{-10}{3}x^4y^4z^3\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
a/
\(\Leftrightarrow A=\dfrac{3}{8}xy^2+B-\dfrac{5}{6}x^2y+\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\\ \Leftrightarrow A-B=-\dfrac{1}{12}x^2y-\dfrac{1}{4}xy^2\)
b/
\(\Leftrightarrow A-B=5xy^3-\dfrac{5}{8}yx^3-\dfrac{21}{4}xy^3+\dfrac{3}{7}x^3y\\ \Leftrightarrow A-B=-\dfrac{1}{4}xy^3-\dfrac{11}{56}x^3y\)
\(=-2x^3y^7+\dfrac{1}{5}x^4y^6+\dfrac{14}{25}x^5y^5\)
\(=\dfrac{25y^2+6xy+10x^2}{10x^2y^3}\)
=25y2+6xy+10x2/10x2y3