4x(x+1)=8(x+1)
Tìm x bt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2 - 4x + 8 = 2x - 1
=> x2 - 4x + 8 - 2x + 1 = 0
=> x2 - 6x + 9 = 0
=> (x - 3)2 = 0
=> x - 3 = 0
=> x = 3
a) Đặt A(x)=0
\(\Leftrightarrow4x-1=0\)
\(\Leftrightarrow4x=1\)
hay \(x=\dfrac{1}{4}\)
b) Đặt B(x)=0
\(\Leftrightarrow2x^2-8=0\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
a. \(x-\frac{3}{7}:\frac{9}{14}=-\frac{7}{6}\Rightarrow x-\frac{2}{3}=-\frac{7}{6}\Rightarrow x=-\frac{1}{2}\)
b. \(\frac{3}{4}+\frac{1}{4}x=\frac{5}{8}\Rightarrow\frac{1}{4}x=-\frac{1}{8}\Rightarrow x=-\frac{1}{2}\)
c. \(\left|4x-1\right|-\frac{1}{2}=3\Rightarrow\left|4x-1\right|=\frac{7}{2}\Leftrightarrow\orbr{\begin{cases}4x-1=\frac{7}{2}\\4x-1=-\frac{7}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{8}\\x=-\frac{5}{8}\end{cases}}}\)
d. \(25\%x+x=-1,25\Rightarrow125\%x=-1,25\Rightarrow\frac{5}{4}x=-\frac{5}{4}\Rightarrow x=-1\)
a) \(\left(x+3\right)^2-x\left(x-1\right)=2\)
\(\Leftrightarrow x^2+6x+9-x^2+x=2\)
\(\Leftrightarrow7x+9=2\)
\(\Leftrightarrow7x=2-9\)
\(\Leftrightarrow7x=-7\)
\(\Leftrightarrow x=\dfrac{-7}{7}=-1\)
b) \(\left(2x+3\right)^2-\left(x+1\right)\left(4x-3\right)=-1\)
\(\Leftrightarrow4x^2+12x+9-\left(4x^2-3x+4x-3\right)=-1\)
\(\Leftrightarrow4x^2+12x+9-4x^2+3x-4x+3=-1\)
\(\Leftrightarrow11x+12=-1\)
\(\Leftrightarrow11x=-13\)
\(\Leftrightarrow x=\dfrac{-13}{11}\)
BÀI 1:
\(a,x^2-2x-1\)
\(=x^2-2x+1-2\)
\(=\left(x-1\right)^2-2\)
Vì: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)
Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy: GTNN của bt là -2 tại x=1
\(b,4x^2+4x-5\)
\(=4x^2+4x+1-6\)
\(=\left(2x+1\right)^2-6\)
Vì: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)
Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
VậyGTNN của bt là -6 tại x=-1/2
BÀI 2:
\(a,2x-x^2-4\)
\(=-x^2+2x-4\)
\(=-x^2+2x-1-3\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì: \(-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy GTLN của bt là -3 tại x=1
b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn
1)
a) Đặt \(A=x^2-2x+1\)
\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)
\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(A_{min}=2\Leftrightarrow x=1\)
Câu b tương tự
2)
a) Đặt \(B=2x-x^2-4\)
\(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy\(B_{max}=-3\Leftrightarrow x=1\)
b) Đặt \(C=-x^2-4\)
Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)
\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)
Vậy \(C_{max}=-4\Leftrightarrow x=0\)
1) \(A=4x-x^2+3\)
\(A=-\left(x^2-4x-3\right)\)
\(A=-\left(x^2-4x+4\right)+7\)
\(A=-\left(x-2\right)^2+7\)
Mà: \(-\left(x-2\right)^2\le0\forall x\) nên: \(A=-\left(x-2\right)^2+7\le7\)
Dấu "=" xảy ra:
\(-\left(x-2\right)^2+7=7\)
\(\Rightarrow x=2\)
Vậy: \(A_{max}=7\) khi \(x=2\)
2) \(B=x-x^2\)
\(B=-x^2+x\)
\(B=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\) nên \(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu "=" xảy ra:
\(-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy: \(B_{max}=\dfrac{1}{4}\) với \(x=\dfrac{1}{2}\)
Ta có : 4x(x + 1) = 8(x + 1)
=> 4x = 8
=> x = 8 : 4
=> x = 2
Vậy x = 2
4x(x+1)=8(x+1)
4x(x+1)-8(x+1)=0
(x+1)(4x-8)=0
* x+1=0
x=0-1
x=-1
* 4x-8=0
4x=0+8
4x=8
x=8:4
x=2
vậy x=-1 hoặc x=2