K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

Ta có : 4x(x + 1) = 8(x + 1) 

=> 4x = 8

=> x = 8 : 4

=> x = 2

Vậy x = 2

9 tháng 10 2019

4x(x+1)=8(x+1)

4x(x+1)-8(x+1)=0

(x+1)(4x-8)=0

* x+1=0

       x=0-1

       x=-1

* 4x-8=0

   4x=0+8

    4x=8

      x=8:4

      x=2

vậy x=-1 hoặc x=2

29 tháng 11 2019

Ta có: x2 - 4x + 8 = 2x - 1

=> x2 - 4x + 8  - 2x + 1 = 0

=> x2 - 6x + 9 = 0

=> (x - 3)2 = 0

=>  x - 3 = 0

=> x = 3

29 tháng 11 2019

Ta có: x2-4x+8=2x-1

   <=> x2-4x-2x+8+1=0 ( Chuyển vế)

   <=> x2-6x+9=0

   <=> x2-2x3+32=0

   <=> (x-3)2=0

   <=> x-3=0

    => x=3

Vậy x=3

a) Đặt A(x)=0

\(\Leftrightarrow4x-1=0\)

\(\Leftrightarrow4x=1\)

hay \(x=\dfrac{1}{4}\)

b) Đặt B(x)=0

\(\Leftrightarrow2x^2-8=0\)

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

19 tháng 8 2020

a. \(x-\frac{3}{7}:\frac{9}{14}=-\frac{7}{6}\Rightarrow x-\frac{2}{3}=-\frac{7}{6}\Rightarrow x=-\frac{1}{2}\)

b. \(\frac{3}{4}+\frac{1}{4}x=\frac{5}{8}\Rightarrow\frac{1}{4}x=-\frac{1}{8}\Rightarrow x=-\frac{1}{2}\)

c. \(\left|4x-1\right|-\frac{1}{2}=3\Rightarrow\left|4x-1\right|=\frac{7}{2}\Leftrightarrow\orbr{\begin{cases}4x-1=\frac{7}{2}\\4x-1=-\frac{7}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{8}\\x=-\frac{5}{8}\end{cases}}}\)

d. \(25\%x+x=-1,25\Rightarrow125\%x=-1,25\Rightarrow\frac{5}{4}x=-\frac{5}{4}\Rightarrow x=-1\)

19 tháng 8 2020

BN ƠI CÂU D 125% Ở ĐÂU DZẠ

2 tháng 7 2023

a) \(\left(x+3\right)^2-x\left(x-1\right)=2\)

\(\Leftrightarrow x^2+6x+9-x^2+x=2\)

\(\Leftrightarrow7x+9=2\)

\(\Leftrightarrow7x=2-9\)

\(\Leftrightarrow7x=-7\)

\(\Leftrightarrow x=\dfrac{-7}{7}=-1\)

b) \(\left(2x+3\right)^2-\left(x+1\right)\left(4x-3\right)=-1\)

\(\Leftrightarrow4x^2+12x+9-\left(4x^2-3x+4x-3\right)=-1\)

\(\Leftrightarrow4x^2+12x+9-4x^2+3x-4x+3=-1\)

\(\Leftrightarrow11x+12=-1\)

\(\Leftrightarrow11x=-13\)

\(\Leftrightarrow x=\dfrac{-13}{11}\)

7 tháng 7 2018

BÀI 1: 

\(a,x^2-2x-1\)

\(=x^2-2x+1-2\)

\(=\left(x-1\right)^2-2\)

Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)

Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy: GTNN của bt là -2 tại x=1

\(b,4x^2+4x-5\)

\(=4x^2+4x+1-6\)

\(=\left(2x+1\right)^2-6\)

Vì: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)

Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

VậyGTNN của bt là -6 tại x=-1/2

BÀI 2:

\(a,2x-x^2-4\)

\(=-x^2+2x-4\)

\(=-x^2+2x-1-3\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Vì: \(-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy GTLN của bt là -3 tại x=1

b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn

7 tháng 7 2018

1)

a) Đặt \(A=x^2-2x+1\) 

\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)

\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy \(A_{min}=2\Leftrightarrow x=1\)

Câu b tương tự

2)

a) Đặt \(B=2x-x^2-4\)

 \(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy\(B_{max}=-3\Leftrightarrow x=1\)

b) Đặt \(C=-x^2-4\)

Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)

\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)

Vậy \(C_{max}=-4\Leftrightarrow x=0\)

10 tháng 8 2023

1) \(A=4x-x^2+3\)

\(A=-\left(x^2-4x-3\right)\)

\(A=-\left(x^2-4x+4\right)+7\)

\(A=-\left(x-2\right)^2+7\)

Mà: \(-\left(x-2\right)^2\le0\forall x\) nên: \(A=-\left(x-2\right)^2+7\le7\)

Dấu "=" xảy ra:

\(-\left(x-2\right)^2+7=7\)

\(\Rightarrow x=2\)

Vậy: \(A_{max}=7\) khi \(x=2\)

10 tháng 8 2023

2) \(B=x-x^2\)

\(B=-x^2+x\)

\(B=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)

Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\) nên \(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

Dấu "=" xảy ra:
\(-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Rightarrow x=\dfrac{1}{2}\)

Vậy: \(B_{max}=\dfrac{1}{4}\) với \(x=\dfrac{1}{2}\)