(7x+2)^-1=(3)^-2
Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a\cdot\dfrac{13}{15}=\dfrac{28}{13}:2=\dfrac{14}{13}\)
=>\(a=\dfrac{14}{13}:\dfrac{13}{15}=\dfrac{210}{169}\)
\(a,2x\left(x^3-3\right)-2x^4=18\\ 2x^4-6x-2x^4=18\\ -6x=18\\ x=-3\)
\(b,9x\left(4-x\right)+\left(3x+1\right)^2=2\\ 36x-9x^2+9x^2+6x+1=2\\ 42x=2-1\\ 42x=1\\ x=\dfrac{1}{42}\)
\(a,\Leftrightarrow2x^4-3x-2x^4=18\Leftrightarrow-3x=18\Leftrightarrow x=-6\\ b,\Leftrightarrow36x-9x^2+9x^2+6x+1=2\\ \Leftrightarrow42x=1\Leftrightarrow x=\dfrac{1}{42}\)
\(\left(3x+1\right)^2=9\left(x-2\right)^2\)
\(\Leftrightarrow9x^2+6x+1=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow9x^2+6x+1=9x^2-36x+36\)
\(\Leftrightarrow9x^2+6x+1-9x^2+36x-36=0\)
\(\Leftrightarrow42x-35=0\)
\(\Leftrightarrow42x=35\)
\(\Leftrightarrow x=\dfrac{35}{42}=\dfrac{5}{6}\)
Vậy: \(S=\left\{\dfrac{5}{6}\right\}\)
P>1/3
=>P-1/3>0
=>\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{1}{3}>0\)
=>\(\dfrac{3\sqrt{x}-3-\sqrt{x}-2}{3\left(\sqrt{x}+2\right)}>0\)
=>2 căn x-5>0
=>x>25/4
\(\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{2x+4}{4-x^2}\\ =\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x+2x+4-2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x}{x+2}\)
\(\left|x+1\right|=3\\ \left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=2\left(loai\right)\\x=-4\left(tm\right)\end{matrix}\right.\)
với x=-4 thì
\(\dfrac{-4}{-4+2}=\dfrac{-4}{-2}=2\)
\(=>P=\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{-2x-4}{x^2-4}\)`(x ne +-2)`
\(P=\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{-2x-4}{\left(x+2\right)\left(x-2\right)}\)
\(P=\dfrac{x^2-2x+2x+4-2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(P=\dfrac{x}{x+2}\)
`|x+1| =3`
`=>[(x+1=3),(x+1=-3):}`
`=> [(x=3-1=2(ktm) ),(x=-3-1=-4(t/m)):}`
Thay `x=-4` vào `P` ta đc
`P= (-4)/(-4+2) = 2`
\(x^3+3x^2+x+a=x^2\left(x-2\right)+5x\left(x-2\right)+11\left(x-2\right)+22+a=\left(x-2\right)\left(x^2+5x+11\right)+22+a⋮\left(x-2\right)\)
\(\Rightarrow22+a=0\Rightarrow a=-22\)
Lời giải:
$117=(2y+1)^2-x^2=(2y+1-x)(2y+1+x)$
Vì $x,y$ nguyên nên $2y+1-x, 2y+1+x$ nguyên. Do đó ta có bảng sau:
\(\left(7x+2\right)^{-1}=3^{-2}\)
\(\frac{1}{\left(7x+2\right)^1}=\frac{1}{3^2}\)
\(1.3^2=1.\left(7x+2\right)^1\)
\(1.\left(7x+2\right)^1=1.3^2\)
\(7x+2=3\)
\(7x=3-2\)
\(7x=1\)
\(x=1:7\)
\(x=\frac{1}{7}\)
Vậy \(x=\frac{1}{7}\)