K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:

$A=2x^2+3y^2-2xy+4x-7y+2012$

$2A=4x^2+6y^2-4xy+8x-14y+4024$

$=(4x^2-4xy+y^2)+5y^2+8x-14y+4024$

$=(2x-y)^2+4(2x-y)+5y^2-10y+4024$

$=(2x-y)^2+4(2x-y)+4+5(y^2-2y+1)+4015$

$=(2x-y+2)^2+5(y-1)^2+4015\geq 4015$

$\Rightarrow A\geq \frac{4015}{2}$

Vậy $A_{\min}=\frac{4015}{2}$ khi $(x,y)=(\frac{-1}{2},1)$

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

lê thị mỹ vân:

a) Theo đề sửa:

$A=x^2+2y^2-2xy+4x-3y+1$

$=(x^2-2xy+y^2)+y^2+4x-3y+1$

$=(x-y)^2+4(x-y)+y^2+y+1$

$=(x-y)^2+4(x-y)+4+y^2+y+\frac{1}{4}-\frac{13}{4}$

$=(x-y+2)^2+(y+\frac{1}{2})^2-\frac{13}{4}$

$\geq \frac{-13}{4}$

Vậy GTNN của $A$ là $\frac{-13}{4}$. Giá trị này đạt được tại $x-y+2=y+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-5}{2}; y=\frac{-1}{2}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

a) Biểu thức không có min. Bạn xem lại đề.

b)

$B=2x^2+3y^2-4xy+4x+4y-2$

$=2(x^2-2xy+y^2)+y^2+4x+4y-2$

$=2(x-y)^2+4(x-y)+y^2+8y-2$

$=2[(x-y)^2+2(x-y)+1]+(y^2+8y+16)-20$
$=2(x-y+1)^2+(y+4)^2-20$

$\geq 0+0-20=-20$

Vậy $B_{\min}=-20$

Giá trị này đạt được khi $x-y+1=0$ và $y+4=0$

$\Leftrightarrow (x,y)=(-5,-4)$

27 tháng 7 2023

a

\(xy+3x-7y-21\\ =\left(xy+3x\right)-\left(7y+21\right)\\ =x\left(y+3\right)-7\left(y+3\right)\\ =\left(y+3\right)\left(x-7\right)\)

b

\(2xy-15-6x+5y\\ =\left(2xy-6x\right)-\left(15-5y\right)\\ =2x\left(y-3\right)-5\left(3-y\right)\\ =2x\left(y-3\right)+5\left(y-3\right)\\ =\left(y-3\right)\left(2x+5\right)\)

c Đề phải là \(\left(2x^2y+2xy^2-x-y\right)\) mới phân tích được: )

\(=2xy\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(2xy-1\right)\)

d

\(7x^3y-3xyz-21x^2+9z\\ =\left(7x^3y-21x^2\right)-\left(3xyz-9z\right)\\ =7x^2\left(xy-3\right)-3z\left(xy-3\right)\\ =\left(xy-3\right)\left(7x^2-3z\right)\)

e

\(4x^2-2x-y^2-y\\ =\left(2x\right)^2-y^2-\left(2x+y\right)\\ =\left(2x-y\right)\left(2x+y\right)-\left(2x+y\right)\\ =\left(2x+y\right)\left(2x-y-1\right)\)

f

\(9x^2-25y^2-6x+10y\\ =\left(3x\right)^2-\left(5y\right)^2-\left(6x-10y\right)\\ =\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)\\ =\left(3x-5y\right)\left(3x+5y-2\right)\)

a: =x(y+3)-7(y+3)

=(y+3)(x-7)

b: \(=2xy-6x+5y-15\)

=2x(y-3)+5(y-3)

=(y-3)(2x+5)

c: \(=2xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(2xy-1\right)\)

d: \(=xy\left(7x^2-3z\right)-3\left(7x^2-3z\right)\)

=(7x^2-3z)(xy-3)

e: =4x^2-y^2-2x-y

=(2x-y)(2x+y)-(2x+y)

=(2x+y)(2x-y-1)

f: =(3x-5y)(3x+5y)-2(3x-5y)

=(3x-5y)(3x+5y-2)

19 tháng 5 2017

câu A thiếu đề

B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)

Min B=2016 khi x-1=0<=>x=1

+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)

=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1

19 tháng 5 2017

Bổ sung câu A. \(A=x^2+2xy+3y^2-4y+2017\)

8 tháng 2 2017

\(A=2012-\left(2x^2+5y^2-2xy-4x-4y\right)\\ \)

Hệ số lẻ quá:

B=2A đặt 2x=z

\(B=m-\left(z^2+10y^2-2yz-4z-8y\right)\)

\(B=m-\left[\left(z-y-2\right)^2+9y^2-12y-4\right]\)

\(B=m-\left[\left(z-y-2\right)^2+\left(t-2\right)^2-4-4\right]\)

\(B=\left(m-8\right)-\left(z-y-2\right)^2-\left(t-2\right)^2\)

\(A_{min}=\frac{2.2012-8}{2}=2008\)đạt tại  \(\orbr{\begin{cases}t-2=0=>y=\frac{2}{3}\\z-y-2=0\Rightarrow x=\frac{4}{3}\end{cases}}\)

7 tháng 2 2017

ghép BP là ra thôi

15 tháng 7 2016

a) \(xy+3x-7y-21\)
\(\Leftrightarrow\left(xy+3x\right)-\left(7y+21\right)\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)\)

15 tháng 7 2016

b) \(2xy-15-6x+5y\)
\(\Leftrightarrow\left(2xy-6x\right)-\left(15-5y\right)\)
\(\Leftrightarrow x\left(2y-6\right)-5\left(3-y\right)\)
\(\Leftrightarrow2x\left(y-3\right)+5\left(y-3\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(y-3\right)\)

30 tháng 10 2021

\(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy.\left(x^2-y^2-2y-1\right)\)

\(=2xy.[x^2-\left(y^2+2y+1\right)]\)

\(=2xy.[x^2-\left(y+1\right)^2]\)

\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)

Vậy chọn đáp án A

12 tháng 1 2022

chọn A

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

6 tháng 8 2018

\(A=2x^2+y^2+4x-2xy\)

\(=\left(x^2+4x+4\right)+\left(x^2-2xy+y^2\right)-4\)

\(=\left(x+2\right)^2+\left(x-y\right)^2-4\ge-4\)

Vậy MIN \(A=-4\)khi   \(x=y=-2\)

6 tháng 8 2018

A= (x2-2xy+y2) +( x2+4x+22) -4

A= (x-y)2+(x+2)2-4

Vì (x-y)2+(x+2)2 >= 0

=> A >= -4

Min a = -4 <=> x=-2=y