Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lê thị mỹ vân:
a) Theo đề sửa:
$A=x^2+2y^2-2xy+4x-3y+1$
$=(x^2-2xy+y^2)+y^2+4x-3y+1$
$=(x-y)^2+4(x-y)+y^2+y+1$
$=(x-y)^2+4(x-y)+4+y^2+y+\frac{1}{4}-\frac{13}{4}$
$=(x-y+2)^2+(y+\frac{1}{2})^2-\frac{13}{4}$
$\geq \frac{-13}{4}$
Vậy GTNN của $A$ là $\frac{-13}{4}$. Giá trị này đạt được tại $x-y+2=y+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-5}{2}; y=\frac{-1}{2}$
Lời giải:
a) Biểu thức không có min. Bạn xem lại đề.
b)
$B=2x^2+3y^2-4xy+4x+4y-2$
$=2(x^2-2xy+y^2)+y^2+4x+4y-2$
$=2(x-y)^2+4(x-y)+y^2+8y-2$
$=2[(x-y)^2+2(x-y)+1]+(y^2+8y+16)-20$
$=2(x-y+1)^2+(y+4)^2-20$
$\geq 0+0-20=-20$
Vậy $B_{\min}=-20$
Giá trị này đạt được khi $x-y+1=0$ và $y+4=0$
$\Leftrightarrow (x,y)=(-5,-4)$
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
a
\(xy+3x-7y-21\\ =\left(xy+3x\right)-\left(7y+21\right)\\ =x\left(y+3\right)-7\left(y+3\right)\\ =\left(y+3\right)\left(x-7\right)\)
b
\(2xy-15-6x+5y\\ =\left(2xy-6x\right)-\left(15-5y\right)\\ =2x\left(y-3\right)-5\left(3-y\right)\\ =2x\left(y-3\right)+5\left(y-3\right)\\ =\left(y-3\right)\left(2x+5\right)\)
c Đề phải là \(\left(2x^2y+2xy^2-x-y\right)\) mới phân tích được: )
\(=2xy\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(2xy-1\right)\)
d
\(7x^3y-3xyz-21x^2+9z\\ =\left(7x^3y-21x^2\right)-\left(3xyz-9z\right)\\ =7x^2\left(xy-3\right)-3z\left(xy-3\right)\\ =\left(xy-3\right)\left(7x^2-3z\right)\)
e
\(4x^2-2x-y^2-y\\ =\left(2x\right)^2-y^2-\left(2x+y\right)\\ =\left(2x-y\right)\left(2x+y\right)-\left(2x+y\right)\\ =\left(2x+y\right)\left(2x-y-1\right)\)
f
\(9x^2-25y^2-6x+10y\\ =\left(3x\right)^2-\left(5y\right)^2-\left(6x-10y\right)\\ =\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)\\ =\left(3x-5y\right)\left(3x+5y-2\right)\)
a: =x(y+3)-7(y+3)
=(y+3)(x-7)
b: \(=2xy-6x+5y-15\)
=2x(y-3)+5(y-3)
=(y-3)(2x+5)
c: \(=2xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(2xy-1\right)\)
d: \(=xy\left(7x^2-3z\right)-3\left(7x^2-3z\right)\)
=(7x^2-3z)(xy-3)
e: =4x^2-y^2-2x-y
=(2x-y)(2x+y)-(2x+y)
=(2x+y)(2x-y-1)
f: =(3x-5y)(3x+5y)-2(3x-5y)
=(3x-5y)(3x+5y-2)
a) \(xy+3x-7y-21\)
\(\Leftrightarrow\left(xy+3x\right)-\left(7y+21\right)\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)\)
b) \(2xy-15-6x+5y\)
\(\Leftrightarrow\left(2xy-6x\right)-\left(15-5y\right)\)
\(\Leftrightarrow x\left(2y-6\right)-5\left(3-y\right)\)
\(\Leftrightarrow2x\left(y-3\right)+5\left(y-3\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(y-3\right)\)
\(A=2012-\left(2x^2+5y^2-2xy-4x-4y\right)\\ \)
Hệ số lẻ quá:
B=2A đặt 2x=z
\(B=m-\left(z^2+10y^2-2yz-4z-8y\right)\)
\(B=m-\left[\left(z-y-2\right)^2+9y^2-12y-4\right]\)
\(B=m-\left[\left(z-y-2\right)^2+\left(t-2\right)^2-4-4\right]\)
\(B=\left(m-8\right)-\left(z-y-2\right)^2-\left(t-2\right)^2\)
\(A_{min}=\frac{2.2012-8}{2}=2008\)đạt tại \(\orbr{\begin{cases}t-2=0=>y=\frac{2}{3}\\z-y-2=0\Rightarrow x=\frac{4}{3}\end{cases}}\)
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy.\left(x^2-y^2-2y-1\right)\)
\(=2xy.[x^2-\left(y^2+2y+1\right)]\)
\(=2xy.[x^2-\left(y+1\right)^2]\)
\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)
Vậy chọn đáp án A
\(A=\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2\right)+\left(2x^2-2x+2-\left(x+1\right)^2\right)\)
\(=\left(y+x+1\right)^2+\left(x-2\right)^2-3\ge-3\)
Min A=-3 khi x=2;y=-3
\(B=\left(x^2+x\left(y-3\right)+\frac{\left(y-3\right)^2}{4}\right)+\left(y^2-3y-\frac{\left(y-3\right)^2}{4}\right)\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)-12}{4}\)
\(=\left(....\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge3\)
Min B=-3 khi y=1;x=1
\(A=2x^2+y^2+4x-2xy\)
\(=\left(x^2+4x+4\right)+\left(x^2-2xy+y^2\right)-4\)
\(=\left(x+2\right)^2+\left(x-y\right)^2-4\ge-4\)
Vậy MIN \(A=-4\)khi \(x=y=-2\)
A= (x2-2xy+y2) +( x2+4x+22) -4
A= (x-y)2+(x+2)2-4
Vì (x-y)2+(x+2)2 >= 0
=> A >= -4
Min a = -4 <=> x=-2=y
Lời giải:
$A=2x^2+3y^2-2xy+4x-7y+2012$
$2A=4x^2+6y^2-4xy+8x-14y+4024$
$=(4x^2-4xy+y^2)+5y^2+8x-14y+4024$
$=(2x-y)^2+4(2x-y)+5y^2-10y+4024$
$=(2x-y)^2+4(2x-y)+4+5(y^2-2y+1)+4015$
$=(2x-y+2)^2+5(y-1)^2+4015\geq 4015$
$\Rightarrow A\geq \frac{4015}{2}$
Vậy $A_{\min}=\frac{4015}{2}$ khi $(x,y)=(\frac{-1}{2},1)$