K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:

$A=2x^2+3y^2-2xy+4x-7y+2012$

$2A=4x^2+6y^2-4xy+8x-14y+4024$

$=(4x^2-4xy+y^2)+5y^2+8x-14y+4024$

$=(2x-y)^2+4(2x-y)+5y^2-10y+4024$

$=(2x-y)^2+4(2x-y)+4+5(y^2-2y+1)+4015$

$=(2x-y+2)^2+5(y-1)^2+4015\geq 4015$

$\Rightarrow A\geq \frac{4015}{2}$

Vậy $A_{\min}=\frac{4015}{2}$ khi $(x,y)=(\frac{-1}{2},1)$

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

lê thị mỹ vân:

a) Theo đề sửa:

$A=x^2+2y^2-2xy+4x-3y+1$

$=(x^2-2xy+y^2)+y^2+4x-3y+1$

$=(x-y)^2+4(x-y)+y^2+y+1$

$=(x-y)^2+4(x-y)+4+y^2+y+\frac{1}{4}-\frac{13}{4}$

$=(x-y+2)^2+(y+\frac{1}{2})^2-\frac{13}{4}$

$\geq \frac{-13}{4}$

Vậy GTNN của $A$ là $\frac{-13}{4}$. Giá trị này đạt được tại $x-y+2=y+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-5}{2}; y=\frac{-1}{2}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

a) Biểu thức không có min. Bạn xem lại đề.

b)

$B=2x^2+3y^2-4xy+4x+4y-2$

$=2(x^2-2xy+y^2)+y^2+4x+4y-2$

$=2(x-y)^2+4(x-y)+y^2+8y-2$

$=2[(x-y)^2+2(x-y)+1]+(y^2+8y+16)-20$
$=2(x-y+1)^2+(y+4)^2-20$

$\geq 0+0-20=-20$

Vậy $B_{\min}=-20$

Giá trị này đạt được khi $x-y+1=0$ và $y+4=0$

$\Leftrightarrow (x,y)=(-5,-4)$

19 tháng 5 2017

câu A thiếu đề

B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)

Min B=2016 khi x-1=0<=>x=1

+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)

=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1

19 tháng 5 2017

Bổ sung câu A. \(A=x^2+2xy+3y^2-4y+2017\)

27 tháng 7 2023

a

\(xy+3x-7y-21\\ =\left(xy+3x\right)-\left(7y+21\right)\\ =x\left(y+3\right)-7\left(y+3\right)\\ =\left(y+3\right)\left(x-7\right)\)

b

\(2xy-15-6x+5y\\ =\left(2xy-6x\right)-\left(15-5y\right)\\ =2x\left(y-3\right)-5\left(3-y\right)\\ =2x\left(y-3\right)+5\left(y-3\right)\\ =\left(y-3\right)\left(2x+5\right)\)

c Đề phải là \(\left(2x^2y+2xy^2-x-y\right)\) mới phân tích được: )

\(=2xy\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(2xy-1\right)\)

d

\(7x^3y-3xyz-21x^2+9z\\ =\left(7x^3y-21x^2\right)-\left(3xyz-9z\right)\\ =7x^2\left(xy-3\right)-3z\left(xy-3\right)\\ =\left(xy-3\right)\left(7x^2-3z\right)\)

e

\(4x^2-2x-y^2-y\\ =\left(2x\right)^2-y^2-\left(2x+y\right)\\ =\left(2x-y\right)\left(2x+y\right)-\left(2x+y\right)\\ =\left(2x+y\right)\left(2x-y-1\right)\)

f

\(9x^2-25y^2-6x+10y\\ =\left(3x\right)^2-\left(5y\right)^2-\left(6x-10y\right)\\ =\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)\\ =\left(3x-5y\right)\left(3x+5y-2\right)\)

a: =x(y+3)-7(y+3)

=(y+3)(x-7)

b: \(=2xy-6x+5y-15\)

=2x(y-3)+5(y-3)

=(y-3)(2x+5)

c: \(=2xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(2xy-1\right)\)

d: \(=xy\left(7x^2-3z\right)-3\left(7x^2-3z\right)\)

=(7x^2-3z)(xy-3)

e: =4x^2-y^2-2x-y

=(2x-y)(2x+y)-(2x+y)

=(2x+y)(2x-y-1)

f: =(3x-5y)(3x+5y)-2(3x-5y)

=(3x-5y)(3x+5y-2)

15 tháng 7 2016

a) \(xy+3x-7y-21\)
\(\Leftrightarrow\left(xy+3x\right)-\left(7y+21\right)\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)\)

15 tháng 7 2016

b) \(2xy-15-6x+5y\)
\(\Leftrightarrow\left(2xy-6x\right)-\left(15-5y\right)\)
\(\Leftrightarrow x\left(2y-6\right)-5\left(3-y\right)\)
\(\Leftrightarrow2x\left(y-3\right)+5\left(y-3\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(y-3\right)\)

8 tháng 2 2017

\(A=2012-\left(2x^2+5y^2-2xy-4x-4y\right)\\ \)

Hệ số lẻ quá:

B=2A đặt 2x=z

\(B=m-\left(z^2+10y^2-2yz-4z-8y\right)\)

\(B=m-\left[\left(z-y-2\right)^2+9y^2-12y-4\right]\)

\(B=m-\left[\left(z-y-2\right)^2+\left(t-2\right)^2-4-4\right]\)

\(B=\left(m-8\right)-\left(z-y-2\right)^2-\left(t-2\right)^2\)

\(A_{min}=\frac{2.2012-8}{2}=2008\)đạt tại  \(\orbr{\begin{cases}t-2=0=>y=\frac{2}{3}\\z-y-2=0\Rightarrow x=\frac{4}{3}\end{cases}}\)

7 tháng 2 2017

ghép BP là ra thôi

30 tháng 10 2021

\(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy.\left(x^2-y^2-2y-1\right)\)

\(=2xy.[x^2-\left(y^2+2y+1\right)]\)

\(=2xy.[x^2-\left(y+1\right)^2]\)

\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)

Vậy chọn đáp án A

12 tháng 1 2022

chọn A

22 tháng 6 2016

\(A=\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2\right)+\left(2x^2-2x+2-\left(x+1\right)^2\right)\)

\(=\left(y+x+1\right)^2+\left(x-2\right)^2-3\ge-3\)

Min A=-3 khi x=2;y=-3

22 tháng 6 2016

\(B=\left(x^2+x\left(y-3\right)+\frac{\left(y-3\right)^2}{4}\right)+\left(y^2-3y-\frac{\left(y-3\right)^2}{4}\right)\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)-12}{4}\)

\(=\left(....\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge3\)

Min B=-3 khi y=1;x=1

6 tháng 8 2018

\(A=2x^2+y^2+4x-2xy\)

\(=\left(x^2+4x+4\right)+\left(x^2-2xy+y^2\right)-4\)

\(=\left(x+2\right)^2+\left(x-y\right)^2-4\ge-4\)

Vậy MIN \(A=-4\)khi   \(x=y=-2\)

6 tháng 8 2018

A= (x2-2xy+y2) +( x2+4x+22) -4

A= (x-y)2+(x+2)2-4

Vì (x-y)2+(x+2)2 >= 0

=> A >= -4

Min a = -4 <=> x=-2=y

12 tháng 7 2016

nhanh lên các bạn nhé mai mình đi học rồi