K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

nhanh lên các bạn nhé mai mình đi học rồi

17 tháng 10 2021

làm ơn giúp e vs

17 tháng 10 2021

\(1,=\left(x-2\right)\left(5-y\right)\\ 2,=2\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(2x-2y-z\right)\\ 3,=5xy\left(x-2y\right)\\ 4,=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-4z^2\right]\\ =3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\\ 6,=-\left(6x^2-3x-4x+2\right)=-\left(2x-1\right)\left(3x-2\right)\\ 7,=\left(2x+y\right)\left(2x+y+x\right)=\left(2x+y\right)\left(3x+y\right)\\ 8,=\left(x-y\right)\left(x+5\right)\\ 9,=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\\ 10,=\left(x^2-9\right)x=x\left(x-3\right)\left(x+3\right)\\ 11,=\left(x-2\right)\left(y+1\right)\\ 12,=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\\ 13,=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

20 tháng 6 2017

a ) \(x^2-x+1\)

\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)

20 tháng 6 2017

Bạn làm giúp mih thêm vài bài nữa đc k

17 tháng 8 2021

đề bài là rút gọn à

a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)

\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)

\(=-3y+2x\)

b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)

\(=5x-1\)

c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)

\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)

\(=-9xy^2-3y+2x\)

30 tháng 8 2023

a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)

\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)

\(=-3y+2x\)

\(=2x-3y\)

b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)

\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)

\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)

\(=5x-1\)

c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)

\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)

\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)

\(=-9xy^2-3x+2x\)

16 tháng 8 2019

\(\text{a) }\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)

\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)

\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)

\(=\left(x^3+x^3\right)+\left(-x^2+2x^2-x^2\right)+\left(xy+xy-2xy\right)+\left(-y-2y+3y\right)-15\)

\(=0+0+0+0-15\)

\(=-15\)

\(\text{b) }6\left(x^3y+x-3\right)-6x\left(2xy^3+1\right)-3x^2y\left(2x-4y^2\right)\)

\(=\left(6x^3y+6x-18\right)-\left(12x^2y^3+6x\right)-\left(6x^3y-12x^2y^3\right)\)

\(=6x^3y+6x-18-12x^2y^3-6x-6x^3y+12x^2y^3\)

\(=\left(6x^3y-6x^3y\right)+\left(6x-6x\right)+\left(-12x^2y^3+12x^2y^3\right)-18\)

\(=0+0+0-18\)

\(=-18\)

\(\text{c) }\left(x^2+2xy+4y^2\right)\left(x-2y\right)-6\left(\frac{1}{2}-\frac{4}{3}y^3\right)\)

\(=\left(x^3-2x^2y+2x^2y-4xy^2+4xy^2-8y^3\right)-\left(3-8y^3\right)\)

\(=\left(x^3-8y^3\right)-\left(3-8y^3\right)\)

\(=x^3-8y^3-3+8y^3\)

\(=x^3-3\)