K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

Em kiểm tra lại đề câu b.

30 tháng 9 2019

20x nhe

\(\left|x-1\right|+\left(y+2\right)^{20}=0\)

=>x-1=0 và y+2=0

=>x=1 và y=-2

Thay x=1 và y=-2 vào X, ta được:

\(X=2\cdot1^5-5\cdot\left(-2\right)^3+2015\)

\(=2017+40=2057\)

4 tháng 12 2017

Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)

à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha

10 tháng 12 2019

3x2+3y2+4xy+2x-2y+2=0

=>2(x2+2xy+y2) + (x2+2x+1) + (y2-2y+1) = 0

=>2(x+y)2+(x+1)2+(y-1)2=0

Vì 2(x+y)2>= 0 với mọi x,y thuộc R

(x+1)2 >=0 với mọi x thuộc R

(y-1)2>=0 với mọi y thuộc R

=> Dấu bằng xảy ra <=> x+y=0 ; x+1=0; y-1=0

<=> x= (-1), y=1

Vậy x=(-1) ; y=1

Học tốt nha ;)

10 tháng 12 2019

  leftrightarrow (x+1)2+(y-1)+2(x+y)2=0

leftrightarrow\(\hept{\begin{cases}x=-1\\y=1\\x=-y\end{cases}}\)leftrightarrow\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Thay x=-1:y=1 vào bài là ok

22 tháng 6 2015

1. x2-4xy + 5y2 = 100\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=100\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=0+10^2=6^2+8^2\)\(\Leftrightarrow\int^{x-2y=0}_{y=10}\)

hoặc \(\int^{x-2y=10}_{y=0}\)      hoặc \(\int^{x-2y=6}_{y=8}\)  hoặc \(\int^{x-2y=8}_{y=6}\)

từ đó ta tìm được (x;y)= ( 20;10);(10;0) ; ( 24;6) ; ( 20; 6)

2. 4x2 + 2y- 4xy + 20x - 6y + 29 = 0 \(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y^2-10y+25\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y-5\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left(2x-y+5\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\int^{2x-y+5=0}_{y+2=0}\Leftrightarrow\int^{x=\frac{-7}{2}}_{y=-2}\) loại vì x, y nguyên

vậy phương trình đã cho không có nghiệm nguyên

 

24 tháng 10 2016

= x^2-4xy+4y^2+y^2-22y+121-93

=(x+2y)^2+(y-11)^2>=-93

GNNN là -93

7 tháng 11 2017

Ta có: \(B=x^2-4xy+5y^2-22y+28\)

                \(=x^2-4xy+y^2-22y+121-93\)

                  \(=\left(x-2y\right)^2+\left(y-11\right)^2-93\)

Vì \(\left(x-2y\right)^2\ge0;\left(y-11\right)^2\ge0\)

\(\Rightarrow B\ge-93\)

Dấu "=" xảy ra khi \(y-11=0\Rightarrow y=11\)

                              \(x-2y=0\Rightarrow x-2.11=0\Rightarrow x=22\)

Vậy Bmin=-93 khi x=22; y=11

23 tháng 6 2017

a)Đặt A=\(x^2-4xy+5y^2-2y+3\)

\(\Leftrightarrow x^2-4xy+4y^2+y^2-2y+1+2\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-1\right)^2+2\)

          Vì \(\left(x-2y\right)^2\ge0;\left(y-1\right)^2\ge0\)

                      Nên \(\left(x-2y\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu = xảy ra khi \(\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2y\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

          Vậy Min A = 2 khi x = 2 ; y = 1

b)k ko hỉu

23 tháng 6 2017

a)A= \(x^2-4xy+5y^2-2y+3\)

\(=x^2-4xy+4y^2+y^2-2y+1-2\)

\(=\left(x-2y\right)^2+\left(y-1\right)^2-2\ge-2\)

MIN A=-2 khi\(\orbr{\begin{cases}x-2y=0\\y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\y=1\end{cases}}}\)Vậy.......

b)\(B=x^2-2xy+2y^2-x+y\)????