Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
a) \(P=3\left(x^2+2xy+y^2\right)-2\left(x+y\right)-100\)
\(P=3\left(x+y\right)^2-2.5-100\)
\(P=3.5^2-110\)
\(P=-35\)
b) \(Q=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3.5+10\)
\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+25\)
\(Q=5^3-2.5^2+25\)
\(Q=100\)
\(A=2x^2+y^2-2xy+x+2\)
\(A=\left(x^2-2xy+y^2\right)+\left[x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{7}{4}\)
\(A=\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(x+\frac{1}{2}\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x-y\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{7}{4}=A\ge\frac{7}{4}>0\forall x;y\)
Vậy không có các số tự nhiên thỏa mã đẳng thức \(A=2x^2+y^2-2xy+x+2=0\)
2x^2 + y^2 + 3xy + 3x + 2y + 2 = 0
<=> 16x^2 + 8y^2 + 24xy + 24x + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + 8y^2 + 16y + 16 = 0
<=> (4x)^2 + 24x(y+1) + [3(y + 1)]^2 - [3(y + 1)]^2 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - 9y^2 - 18y - 9 + 8y^2 + 16y + 16 = 0
<=> (4x + 3y + 3)^2 - y^2 - 2y - 1 + 8 = 0
<=> (4x + 3y + 3)^2 - (y + 1)^2 = - 8
<=> (y + 1)^2 - (4x + 3y + 3)^2 = 8
<=> (y + 1 +4x + 3y + 3)(y + 1 - 4x - 3y - 3) = 8
<=> 4(x + y + 4)( - 4x - 2y - 2) = 8
<=> (x + y + 4)( 2x + y + 1) = -1
=>
{x + y + 4 = -1
{2x + y + 1 = 1
=> x = 2 và y = - 4
{x + y + 4 = 1
{2x + y + 1 = - 1
=> x = - 2 và y = 2
vậy nghiệm (x;y) = (2 ; - 4) (-2; 2)
^^ ko hiểu thì bình luận
3x2+3y2+4xy+2x-2y+2=0
=>2(x2+2xy+y2) + (x2+2x+1) + (y2-2y+1) = 0
=>2(x+y)2+(x+1)2+(y-1)2=0
Vì 2(x+y)2>= 0 với mọi x,y thuộc R
(x+1)2 >=0 với mọi x thuộc R
(y-1)2>=0 với mọi y thuộc R
=> Dấu bằng xảy ra <=> x+y=0 ; x+1=0; y-1=0
<=> x= (-1), y=1
Vậy x=(-1) ; y=1
Học tốt nha ;)
leftrightarrow (x+1)2+(y-1)2 +2(x+y)2=0
leftrightarrow\(\hept{\begin{cases}x=-1\\y=1\\x=-y\end{cases}}\)leftrightarrow\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Thay x=-1:y=1 vào bài là ok