cho a+b=10 va ab=4 Tinh
1 A=a^2+b^2
2 a^3+b^3
3 a^4+b^4
4 a^5+b^5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left\{1;2;3;4;5\right\}\)
\(\Rightarrow A=\left\{x\inℕ|1\le x\le5\right\}\)
b) \(B=\left\{0;1;2;3;4\right\}\)
\(\Rightarrow B=\left\{x\inℕ|0\le x\le4\right\}\)
c) \(C=\left\{1;2;3;4\right\}\)
\(\Rightarrow C=\left\{x\inℕ|1\le x\le4\right\}\)
d) \(D=\left\{0;2;4;6;8\right\}\)
\(\Rightarrow D=\left\{x\inℕ|x=2k;0\le k\le4;k\inℕ\right\}\)
e) \(E=\left\{1;3;5;7;9;...49\right\}\)
\(\Rightarrow E=\left\{x\inℕ|x=2k+1;0\le k\le24;k\inℕ\right\}\)
f) \(F=\left\{11;22;33;44;...99\right\}\)
\(\Rightarrow F=\left\{x\inℕ|x=11k;1\le k\le9;k\inℕ\right\}\)
a)\(x:\frac{9}{22}=44\) b)\(x:\frac{5}{11}=33\) c)\(x:\frac{4}{33}=22\)
\(x\) \(=44\times\frac{9}{22}\) \(x\) \(=33\times\frac{5}{11}\) \(x\) \(=22\times\frac{4}{33}\)
\(x\) \(=18\) \(x\) \(=15\) \(x\) \(=\frac{8}{3}\)
A) X : 9/22 = 44
X=44x9/22
X=18
B) X : 5/11 = 33
X=33x5/11
X=15
C) X : 4/33 = 22
X=22x4/33
X=8/3
Giải:
Ta có: \(a:b:c=3:4:5\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{2b}{8}=\frac{3c}{15}=\frac{a+2b+3c}{3+8+15}=\frac{44,2}{26}=1,7\)
+) \(\frac{a}{3}=1,7\Rightarrow a=5,1\)
+) \(\frac{b}{4}=1,7\Rightarrow b=6,8\)
+) \(\frac{c}{5}=1,7\Rightarrow c=8,5\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(5,1;6,8;8,5\right)\)
=>\(\frac{a}{3}\)=\(\frac{b}{4}\)=\(\frac{c}{5}\)
=>\(\frac{a}{3}\)=\(\frac{2b}{8}\)=\(\frac{3c}{15}\)=\(\frac{a+2b+3c}{3+8+15}\)=\(\frac{44,2}{26}\)=1,7
=.a=3.1,7=5,1
b=1,7.8:2=6,8
c=1,7.15:3=8,5
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5
a,=250+(5*10)
=250+50
=300
b,=(11+22)+(33+44)+55
=33+77+55
=(33+77)+55
=110+55
=165
\(a+b=10\) và \(ab=4\)
1. Có: \(A=a^2+b^2=\left(a+b\right)^2-2ab=10^2-2.4=92\)
2. \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=10^3-3.4.10=880\)
3. \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=92^2-2.4^2=8432\)
4. \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)=92.880-4^2.10=80800\)