Cm bất đẳng thức sau vs a, b, c >0.
(a+b)(ab+1)>_0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c và d ở đâu vại:>
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a= b
Ta có đpcm
Biến đổi tương đương:
\(3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z\)
Biến đổi tương đương:
\(\Leftrightarrow4x^2+4y^2+4z^2\ge2x^2+2y^2+2z^2+2xy+2yz+2zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z\)
A no thơ quay nhưng lại không hay:P(Another way)
\(BĐT\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\) (biến đổi tương đương thôi)
\(\Leftrightarrow\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y-2z\right)^2\ge0\) (true)
Đẳng thức xảy ra khi x =y = z
P/s: cách này làm màu thôi :D
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(X+\dfrac{1}{X}\ge2\) (X>0)
B) \(\dfrac{A}{B}+\dfrac{B}{A}\ge2\) (AB>0)
Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT
Ta có: \(\left(m-n\right)^2\ge0\)
<=> \(m^2-2m.n+n^2\ge0\)
<=> \(m^2+2m.n+n^2-4m.n\ge0\)
<=> \(\left(m+n\right)^2\ge4m.n\)
=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)
a, Áp dụng BĐT côsi ta có:
\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)
vậy \(\dfrac{1}{x}+x\ge2\) (x>0)
b, Áp dụng BĐT côsi ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0
-----------Chúc bạn học tốt -------------
trả lời
dùng bất đẳng thức cosi cho 2 số ko âm
sử dụng cộng mỗi cặp trên
đc 3 cặp
cộng lại là ra
Bài 1:
Chiều thuận:\(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3\)
Giả sử cả \(x\not\vdots 3, y\not\vdots 3\). Ta biết rằng một số chính phương khi chia 3 thì dư $0$ hoặc $1$.
Do đó nếu \(x\not\vdots 3, y\not\vdots 3\Rightarrow x^2\equiv 1\pmod 3; y^2\equiv 1\pmod 3\)
\(\Rightarrow x^2+y^2\equiv 2\pmod 3\) (trái với giả thiết )
Suy ra ít nhất một trong 2 số $x,y$ chia hết cho $3$
Giả sử $x\vdots 3$ \(\Rightarrow x^2\vdots 3\). Mà \(x^2+y^2\vdots 3\Rightarrow y^2\vdots 3\Rightarrow y\vdots 3\)
Vậy \(x^2+y^2\vdots 3\Rightarrow x,y\vdots 3\)
Chiều đảo:
Ta thấy với \(x\vdots 3, y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\) (đpcm)
Vậy ta có đpcm.
Bài 2: > chứ không \(\geq \) nhé, vì khi \(a=b=c=\frac{1}{2}\) thì cả 3 BĐT đều đúng.
Phản chứng, giả sử cả 3 BĐT đều đúng
\(\Rightarrow \left\{\begin{matrix} a(1-b)> \frac{1}{4}\\ b(1-c)> \frac{1}{4}\\ c(1-a)>\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow a(1-a)b(1-b)c(1-c)> \frac{1}{4^3}(*)\)
Theo BĐT AM-GM thì:
\(a(1-a)\leq \left(\frac{a+1-a}{2}\right)^2=\frac{1}{4}\)
\(b(1-b)\leq \left(\frac{b+1-b}{2}\right)^2=\frac{1}{4}\)
\(c(1-c)\leq \left(\frac{c+1-c}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow abc(1-a)(1-b)(1-c)\leq \frac{1}{4^3}\) (mâu thuẫn với $(*)$)
Do đó điều giả sử là sai, tức là trong 3 BĐT trên có ít nhất một BĐT đúng.