Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(A^2+B^2\ge2AB\Leftrightarrow\left(A-B\right)^2\ge0\)(luôn đúng)
B)\(A^2B=A\cdot A\cdot B;AB^2=A\cdot B\cdot B\)
áp dụng BĐT AM-GM
\(A\cdot A\cdot B\le\dfrac{A^3+A^3+B^3}{3};A\cdot B\cdot B\le\dfrac{A^3+B^3+B^3}{3}\)
cộng 2 vế của BĐT cho nhau
\(\Rightarrow A^2B+AB^2\le A^3+B^3\left(đpcm\right)\)
C)tương tự câu B) ta có
\(A^3B\le\dfrac{A^4+A^4+A^4+B}{4};AB^3\le\dfrac{A^4+B^4+B^4+B^{\text{4}}}{4}\)
cộng từng vế của BĐT ta có đpcm
A)\(A^2+B^2\ge AB+AB\)
\(\Leftrightarrow\)\(A^2+B^2\ge2AB\)
\(\Leftrightarrow A^2-2AB+B^2\ge0\)
\(\Leftrightarrow\left(A+B\right)^2\ge0\)(luôn đúng)
Vậy \(A^2+B^2\ge AB+AB\)(đpcm)
không cần giỏi cũng giải được mà. cứ giải đi không cần biết đúng hay sai là được
THẾ LÀ GIỎI RÙI
nhưng mình nghĩ mãi không ra nếu bạn nói được như vậy thì thử giải giúp mình xem
Bài làm
a) Đặt a3 + b3 - ab2 - a2b = 0
<=> ( a + b )( a2 + ab + b2 ) - ab( a + b ) = 0
<=> ( a + b )( a2 + ab + b2 - ab ) = 0
<=> ( a + b )( a2 + b2 ) = 0 (1)
Mà a2 + b2 > 0
=> ( a + b )( a2 + b2 ) > 0 (2)
Từ (1) và (2) => ( a + b )( a2 + b2 ) > 0
Vậy a3 + b3 - ab2 - a2b > 0 ( đpcm )
b) Đặt a5 + b5 - a4b - ab4 = 0
<=> ( a5 - a4b ) + ( b5 - ab4 ) = 0
<=> a4( a - b ) + b4( b - a ) = 0
<=> a4( a - b ) - b4( a - b ) = 0
<=> ( a - b )( a4 - b4 ) = 0 (1)
Mà a4 - b4 = ( a2 + b2 )( a2 - b2 ) < 0
=> ( a - b )( a4 - b4 ) < 0 (2)
Từ (1) và (2) => ( a - b )( a4 - b4 ) < 0
Vậy a5 + b5 - a4b - ab4 < 0 ( đpcm )
c và d ở đâu vại:>
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a= b
Ta có đpcm