K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

a25/27 15/16

25 tháng 8 2017

1)      a3 + b3 + c3 – 3abc

Ta sẽ thêm và bớt  3a2b +3ab2  sau đó nhóm để phân tích tiếp

           a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)

                            = (a + b)3 +c3 – 3ab(a + b + c)

                            = (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]

                            = (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]

                            = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)

2)      x– 1     

Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm: 

           x5  – 1   = x5 – x + x – 1

                        = (x5 – x) + (x – 1)

                        = x(x4 – 1) + ( x – 1)

                       = x(x2 – 1)(x2 + 1) + (x - 1)

                       = x(x +1)(x – 1)(x2 + 1) + (  x – 1)

                       = (x – 1)[x(x + 1)(x2 + 1) + 1].

3)      4x+ 81 

Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:

          4x+ 81  =  4x + 36x2 + 81 – 36x2

                        = ( 2x+ 9)2 – (6x)2

                        =  (2x2 + 9 – 6x)(2x2 + 9 + 6x)

10 tháng 1 2022

cd+3.22.ab=(cd+12.ab) \vdots 1111

Ta có:

\overline{abcd} = \overline{ab}abcd=ab . 100 + \overline{cd}100+ cd

= \overline{ab}= ab . 88 + \overline{ab}88 + ab . 12 + \overline{cd}12+cd

= \overline{ab}= ab . 88 . 11 + (\overline{ab}11 +(ab . 12 + \overline{cd})12+cd)

Vì (\overline{ab}(ab . 88 . 11)11) \vdots 1111 và (\overline{ab}(ab . 12 + \overline{cd})12+cd) \vdots 1111.

Nên \overline{abcd}abcd \vdots 1111.

11 tháng 1 2022

abcd=1111; 2222; 3333; 4444;...

26 tháng 7 2020

Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}

18 tháng 3 2017

\(A=mn\left(m^2-n^2\right)\) (1)

\(A=mn\left(n-m\right)\left(n+m\right)\)(1)

1.- với A dạng (1) ta có (m^2 -n^2) luôn chia hết cho 3 { số chính phương luôn có dạng 3k hoặc 3k+1}

2.-Với A dạng (2)

2.1- nếu n hoặc m chẵn hiển nhiên A chia hết cho 2

2.1- nếu n và m lẻ thì (n+m) chia hết cho 2

Vậy: A chia hết cho 2&3 {2&3 ntố cùng nhau) => A chia hết cho 6 => dpcm

19 tháng 3 2017

mơn ạ yeu

8 tháng 1 2024

Giải thích các bước giải:

 

a+b+2024c=c3

 

⇔a+b+c=c3−2023c

 

⇔a+b+c=c(c2−2023)

 

VP =c(c2−2023)

 

=c(c2−1−2022)

 

=c[(c−1)(c+1)−2022]

 

Vì (c−1)c(c+1) là 3 số nguyên liên tiếp ⇒(c−1)c(c+1)⋮23

 

Mà 2022c⋮23⇒(c−1)c(c+1)⋮23

 

⇒a+b+c⋮23(1)

 

Xét hiệu a3+b3+c3−a−b−c

 

=a(a2−1)+b(b2−1)+c(c2−1)

 

=(a−1)a(a+1)+(b−1)b(b+1)+(c−1)c(c+1)

 

Vì (a−1,a,a+1);(b−1,b,b+1);(c−1,c,c+1) là các nhóm số nguyên liên tiếp 

 

⇒(a−1)a(a+1)+(b−1)b(b+1)+(c−1)c(c+1)⋮23

 

⇒a3+b3+c3−a−b−c⋮23(2)

 

Từ (1) và (2)⇒a3+b3+c3⋮23

 

Mà ƯCLN(2,3) = 1 ⇒a3+b3+c3⋮6

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

a) Theo đề bài: 84 chia hết cho a và 180 chia hết cho a nên a là ƯC(84, 180) và a > 6.

Ta có: 84 = 22.3.7

180 = 22. 32.5

ƯCLN(84, 180) = 22. 3 = 12

=> a \( \in \) ƯC(84, 180) = Ư(12) = {1; 2; 3; 4; 6; 12}

Mà a > 6.

=> a = 12.

Vậy tập hợp A = {12}

b) Vì b chia hết cho 12, b chia hết cho 15, b chia hết cho 18 nên b là BC(12, 15, 18) và 0 < b <300

Ta có: \(12 = 2^2. 3;  15 = 3.5;  18 = 2.3^2\)

\(\Rightarrow BCNN(12, 15, 18) = 2^2 . 3^2.5 = 180\)

=> b\( \in \) BC(12, 15, 18) = B(180) = {0; 180; 360;...}

Mà 0 < b < 300

=> b = 180

Vậy tập hợp B = {180}

22 tháng 5 2017

Ta có : \(17a+13b+9c⋮7\Rightarrow\left(14a+3a\right)+\left(7b+6b\right)+9c⋮7\)

\(\Rightarrow\left(3a+6b+9c\right)+\left(14a+7b\right)⋮7\)

\(\Rightarrow3\left(a+2b+3c\right)+7\left(2a+b\right)⋮7\)

Vì : \(3\in\) N* ; \(a+2b+3c⋮7\Rightarrow3\left(a+2b+3c\right)⋮7\)

Mà : \(7\left(2a+b\right)⋮7\)

\(\Rightarrow3\left(a+2b+3c\right)+7\left(2a+b\right)⋮7\Rightarrow17a+13b+9c⋮7\)

27 tháng 2 2017

Nguyễn Huy TúHoàng Thị Ngọc AnhAkai Harumangonhuminhhelp me!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

28 tháng 2 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{a+2b+2+2c+1+2a}\\ =\frac{a+b+c}{\left(a+2a\right)+\left(b+2b\right)+\left(c+2c\right)}\\ =\frac{a+b+c}{3a+3b+3c}\\ =\frac{a+b+c}{3\left(a+b+c\right)}\)

Ta có:

\(a+b+c⋮a+b+c\\ \Rightarrow a+b+c⋮3\)

Vậy \(a+b+c⋮3\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 10 2023

\(a \vdots b\) nếu có \({q_1} \ne 1\) để \(a = b.{q_1}\)

\(b \vdots a\) nếu có \({q_2} \ne 1\) để \(b = a.{q_2}\).

Suy ra \(a = b.{q_1} = \left( {a.{q_2}} \right).{q_1}\)\( = a.{q_1}.{q_2} = a.\left( {{q_1}.{q_2}} \right)\)\( \Rightarrow {q_1}.{q_2} = 1\)

Mà \({q_1} \ne 1\) và \({q_2} \ne 1\) nên \({q_1} = {q_2} =  - 1\) vì chỉ có \(\left( { - 1} \right).\left( { - 1} \right) = 1\)

Vậy \(a =  - b\) và \(b =  - a\). Hay a và b là hai số đối nhau và khác nhau.

Các số nguyên cần tìm là các số nguyên khác 0 vì chỉ có số 0 có số đối bằng chính nó.