Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì \(\left(n,3\right)=1\) nên \(n⋮̸3\) nên n chia 3 dư 1 hoặc dư 2
- Nếu n chia 3 dư 1 thì \(\left(n-1\right)⋮3\Rightarrow A⋮3\)
- Nếu n chia 3 dư 2 thì \(\left(n+1\right)⋮3\Rightarrow A⋮3\)
Như vậy \(A⋮3\)
Lại có n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\) (1)
Mặt khác n lẻ \(\Rightarrow\left(n^2+1\right)⋮2\) (2)
Từ (1) và (2) suy ra \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\right]⋮16\)
Hay \(A⋮16\)
Ta có \(A⋮3;A⋮16\), mà (3;16) = 1 nên \(A⋮48\)
2/ \(B=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
- Chứng minh \(B⋮16\) tương tự như ở câu 1
- Ta sẽ đi chứng minh \(B⋮5\)
+ Nếu n chia 5 dư 1 thì \(\left(n-1\right)⋮5\Rightarrow B⋮5\)
+ Nếu n chia 5 dư 4 thì \(\left(n+1\right)⋮5\Rightarrow B⋮5\)
+ Nếu n chia 5 dư 2 hoặc dư 3 thì \(\left(n^2+1\right)⋮5\Rightarrow B⋮5\)
Do đó \(B⋮5\)
Kết hợp với \(B⋮16\) ở trên suy ra \(B⋮80\)
4. \(D=n^8-n^4=n^4\left(n^4-1\right)=n^3\left(n-1\right).n.\left(n+1\right)\left(n^2+1\right)\)
- Dễ thấy n-1, n, n+1 là 3 số nguyên liên tiếp nên \(D⋮3\)
- Chứng minh \(D⋮5\)
+ Nếu \(n⋮5\) thì \(D⋮5\)
+ Nếu n chia 5 dư 1;2;3;4 thì ... (tương tự câu 2)
- Chứng minh \(D⋮16\)
+ Nếu n chẵn thì \(n^4⋮16\Rightarrow D⋮16\)
+ Nếu n lẻ, cmtt câu 1
Ta có (16;3;5) = 1 nên \(D⋮\left(16.3.5\right)=240\)
3. \(C=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)
\(=n^2\left(n^2-1\right)\left(n^2+2\right)=n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)\)
- Chứng minh \(C⋮8\)
+ Nếu n chẵn thì \(n^2⋮4\) và \(\left(n^2+2\right)⋮2\) \(\Rightarrow\left[n^2\left(n+2\right)\right]⋮8\) nên \(C⋮8\)
+ Nếu n lẻ thì n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\Rightarrow C⋮8\)
- Chứng minh \(C⋮9\)
+ Dễ thấy \(\left[n\left(n-1\right)\left(n+1\right)\right]⋮3\) (1)
+ Ta sẽ chứng minh \(\left[n\left(n^2+2\right)\right]⋮3\)
Nếu \(n⋮3\) thì \(\left[n\left(n^2+2\right)\right]⋮3\)
Nếu n chia 3 dư 1 hoặc 2 thì \(\left[n\left(n^2+2\right)\right]⋮3\)
Vậy \(\left[n\left(n^2+2\right)\right]⋮3,\forall n\in Z\) (2)
Từ (1) và (2) suy ra \(\left[n\left(n-1\right)\left(n+1\right)\right].\left[n\left(n^2+2\right)\right]⋮\left(3.3\right)=9\)
Hay \(C⋮9\)
Ta có \(C⋮8\) và \(C⋮9\), mà (8;9) = 1 nên \(C⋮72\)
a) \(35^6-35^5=35^5\left(35-1\right)=35^5.34\)
\(\Rightarrow35^6-35^5⋮34\)
b) \(43^4+43^5=43^4\left(1+43\right)=43^4.44\)
\(\Rightarrow43^4+44^5⋮44\)
Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d∈N)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d∈Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy 12n+1/30n+2 là phân số tối giản
k cho mk nha
a/rút gọn n ta còn 3+1/5+10=4/15(tối giản suy ra đpcm)
b/tương tự như câu a nhưng thay số
c/rút gọn n còn 3+2/4+3^2+1=5/14( tối giản suy ra đpcm)
d/rút gọn n ta còn 2+1/2^2-1=3/3=1/1(tối giản suy ra đpcm)
Tèn ten xong nhưng ko bik đúng hay sai nha!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(a)\) Ta có :
\(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)
\(\Leftrightarrow\)\(\frac{3m-6+12m+4}{12}< 0\) ( quy đồng )
\(\Leftrightarrow\)\(3m-6+12m+4< 0\)
\(\Leftrightarrow\)\(\left(12m+3m\right)+\left(4-6\right)< 0\)
\(\Leftrightarrow\)\(15m-2< 0\)
\(\Leftrightarrow\)\(15m< 2\)
\(\Leftrightarrow\)\(m< \frac{2}{15}\)
Vậy để \(\frac{m-2}{4}+\frac{3m+1}{3}\) có giá trị âm thì \(m< \frac{2}{15}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\frac{m-4}{6m+9}>0\)
\(\Leftrightarrow\)\(m-4>0\) ( nhân hai vế cho \(6m+9\) )
\(\Leftrightarrow\)\(m>4\)
Vậy để \(\frac{m-4}{6m+9}\) có giá trị dương thì \(m>4\)
Chúc bạn học tốt ~
Vì A, B, C thuộc Z nên tử chia hết cho mẫu, đặt phép chia ra
a,Gọi d là ƯC(3n+1;5n+2)
3n+1 chia hết d; 5n+2 chia hết d
5(3n+1) chia hết d;3(5n+2) chia hết d
15n+5 chia hết d; 15n+6 chia hết d
1 chia hết d
d=1
tối giản với n thuộc N
B; gọi d là ƯC(12n+1;30n+2)
12n+1 chia hết d; 30n+2 chia hết d
5(12n+1) chia hết d; 2(30n+2) chia hết d
60n+5 chia hết d; 60n+4 chia hết d
1 chia hết d
d=1
tối giản ...
D;2n+1 chia hết d;2n^2-1 chia hết d
n(2n+1) chia hết d ; 2n^2-1 chia hết d
2n^2+n chia hết d ;2n^2-1 chia hết d
n+1 chia hết d
2(n+1)=2n+2 chia hết d
1 chia hết d
tối giản
a) Đặt \(A=\frac{3n+1}{5n+2}\). Gọi ƯCLN(3n+1 , 5n+2) = d \(\left(d\ge1\right)\)
Khi đó : \(3n+1⋮d\) và \(5n+2⋮d\)
\(\Rightarrow5\left(3n+1\right)⋮d\) và \(3\left(5n+2\right)⋮d\)
\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\Rightarrow d=1\)
Suy ra ƯCLN(3n+1 , 5n+2) = 1 , vậy A là phân số tối giản.
b) Đặt \(B=\frac{n^3+2n}{n^4+3n^2+1}\) . Gọi ƯCLN(n3+2n , n4+3n2+1) = d \(\left(d\ge1\right)\)
Khi đó : \(B=\frac{n\left(n^2+2\right)}{n^2\left(n+2\right)+n^2+1}\)
Ta có : \(n\left(n^2+2\right)⋮d\) và \(n^2\left(n+2\right)+n^2+1⋮d\)
Từ \(n\left(n^2+2\right)⋮d\) \(\Rightarrow\left[\begin{array}{nghiempt}n⋮d\\n^2+2⋮d\end{array}\right.\)
TH1. Nếu \(n⋮d\) thì ta viết dưới mẫu thức B dưới dạng :
\(n\left(n^3+3n\right)+1⋮d\) . mà n(n3+3n)\(⋮\)d => \(1⋮d\) \(\Rightarrow d\le1\)
Mà \(d\ge1\Rightarrow d=1\). Lập luận tương tự câu a) , suy ra đpcm
TH2. Nếu \(n^2+2⋮d\) thì ta viết mẫu thức B dưới dạng :
\(\left(n^4+2n^2\right)+\left(n^2+2\right)-1=\left(n^2+2\right)\left(n^2+1\right)-1⋮d\)
mà n2+2 \(⋮\)d nên \(1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1
Lập luận tương tự...
a)Gọi UCLN(3n+1;5n+2) là d
Ta có:
[3(5n+2)]-[5(3n+1)] chia hết d
=>[15n+6]-[15n+5] chia hết d
=>1 chia hết d.Suy ra 3n+1 và 3n+5 là số nguyên tố cùng nhau
=>Phân số tối giản
b)Gọi d là UCLN(n3+2n;n4+3n2+1)
Ta có:
n3+2n chia hết d =>n(n3+2n) chia hết d
=>n4+2n2 chia hết d (1)
n4+3n2-(n4+2n2)=n2+1 chia hết d
=>(n2+1)2=n4+2n2+1 chia hết d (2)
Từ (1) và (2) => (n4+3n2+1)-(n4-2n2) chia hết d
=>1 chia hết d
=>d=1.Suy ra n3+2n và n4+3n2+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}