Phân tích đa thức thành nhân tử
\(x^{4\:}+y^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(x^4+y^4\)
\(=x^4+2x^2y^2+y^4-2x^2y^2\)
\(=\left(x^2+y^2\right)^2-\left(\sqrt{2}xy\right)^2\)
\(=\left(x^2+\sqrt{2}xy+y^2\right)\left(x^2-\sqrt{2}xy+y^2\right)\)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
x^4 - y^4
= (x^2 - y^2)(x^2 + y^2)
= (x - y)(x + y)(x^2 + y^2)
`#3107`
`x^4 - 8x + 63`
`= x^4 + 4x^3 + 9x^2 - 4x^3 -16x^2 - 36x + 7x^2 + 28x + 63`
`= (x^4 + 4x^3 + 9x^2) - (4x^3 + 16x^2 + 36x) + (7x^2 + 28x + 63)`
`= x^2(x^2 + 4x + 9) - 4x(x^2 + 4x + 9) + 7(x^2 + 4x + 9)`
`= (x^2 + 4x + 9)(x^2 - 4x + 7)`
____
`64x^4 + y^4`
`= 64x^4 + 16x^2y^2 + y^4 - 16x^2y^2`
`= (64x^4 + 16x^2y^2 + y^4) - (16x^2y^2)`
`= [(8x^2)^2 + 2*8x^2*y^2 + (y^2)^2] - (4xy)^2`
`= (8x^2 + y^2)^2 - (4xy)^2`
`= (8x^2 + y^2 - 4xy)(8x^2 + y^2 + 4xy)`
____
`x^3 + 3xy`
`= x(x^2 + 3y)`
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(=\left(3x-3y\right)^2-\left(2x+2y\right)^2=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)
\(=\left(x-5y\right)\left(5x-y\right)\)
\(x^4+y^4\)
= \(\left(x^2\right)^2+\left(y^2\right)^2+2x^2y^2-2x^2y^2\)
= \(\left(x^2+y^2\right)^2-2x^2y^2\)
= \(\left(x^2+y^2-\sqrt{2}xy\right)\left(x^2+y^2+\sqrt{2}xy\right)\)
Chúc bạn học tốt !!!
Bài làm
x4 + y4
= ( x2 )2 + 2x2y2 + ( y2 )2 - 2x2y2
= [ ( x2 )2 + 2x2y2 + ( y2 )2 ] - 2x2y2
= ( x2 + y2 )2 - 2x2y2
= ( x2 + y2 )2 - ( \(\sqrt{2}xy\))2
= ( x2 + y2 - \(\sqrt{2}xy\))( x2 + y2 + \(\sqrt{2}xy\))
# Học tốt #