K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2019

\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

\(VT=\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5-2}\right)^2}-\sqrt{5}=\left|\sqrt{5}-2\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}=-2\)

Ta thấy VT = VF = -2

\(\Rightarrow\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\left(đpcm\right)\)

Chúc bạn học tốt !!!

28 tháng 9 2019

\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)=\(\sqrt{\left(2\right)^2-2.2\sqrt{5}+5}-\sqrt{5}\)=\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)=\(|2-\sqrt{5}|-\sqrt{5}\)=\(\sqrt{5}-2-\sqrt{5}\)=\(-2\)=Vế Phải (điều phải chứng min)

CM : \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

Giải :

VT= \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\left|\sqrt{5}-2\right|-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\)

Thấy VT = VP = - 2

=> \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\) ( đpcm )

2 tháng 6 2017
  1. \(\sqrt{\sqrt{5}^2-2.2\sqrt{5}+4}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(dpcm\right)\)
  2. \(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\sqrt{7}^2+2.4\sqrt{7}+16}-\sqrt{7}\)\(=\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}=\sqrt{7}+4-\sqrt{7}=4\left(DPCM\right)\)
17 tháng 12 2023

\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7\)

\(=16-8\sqrt{7}+7=23-8\sqrt{7}\)

\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

\(=\left|\sqrt{5}-2\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}=-2\)

\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)

\(=\dfrac{\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)

\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-1}{2-1}=2\)

\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{1}{2}\sqrt{6}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{1}{2}-2=-\dfrac{3}{2}=-1,5\)

29 tháng 6 2021

\(VT=\left(\dfrac{\sqrt{14.14}}{\sqrt{14}}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}\)

\(=\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\sqrt{30-6\sqrt{21}}+\sqrt{70-14\sqrt{21}}\)

\(=\sqrt{21-2.3\sqrt{21}+9}+\sqrt{21-2.7.\sqrt{21}+49}\)

\(=\sqrt{\left(\sqrt{21}-3\right)^2}+\sqrt{\left(7-\sqrt{21}\right)^2}\)

\(=\sqrt{21}-3+7-\sqrt{21}=4\)

7 tháng 7 2021

\(\sqrt{4x+8}+3\sqrt{x+2}=3+\dfrac{4}{5}\sqrt{25x+50}\left(x\ge-2\right)\)

\(\Rightarrow2\sqrt{x+2}+3\sqrt{x+2}-4\sqrt{x+2}=3\Rightarrow\sqrt{x+2}=3\Rightarrow x=7\)

\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{\dfrac{4+2\sqrt{3}}{2}}+\sqrt{\dfrac{4-2\sqrt{3}}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}+\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}+\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)