- \(\sqrt{\sqrt{5}^2-2.2\sqrt{5}+4}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(dpcm\right)\)
- \(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\sqrt{7}^2+2.4\sqrt{7}+16}-\sqrt{7}\)\(=\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}=\sqrt{7}+4-\sqrt{7}=4\left(DPCM\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(9+4\sqrt{5}=4+4\sqrt{5}+5=2^2+2\cdot2\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{5}+2\right)^2\left(ĐPCM\right)\)
a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\left(đpcm\right)\)
b)\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(đpcm\right)\)
c)\(\left(4-\sqrt{7}\right)^2=16-8\sqrt{7}+7=23-8\sqrt{7}\left(đpcm\right)\)
d)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}=4+\sqrt{7}-\sqrt{7}=4\left(đpcm\right)\)
Câu 8:
a)
Ta có: \(VT=\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)
\(=\left|\sqrt{3}-1\right|-\sqrt{3}\)(1)
Ta có: 3>1
\(\Leftrightarrow\sqrt{3}>\sqrt{1}\)
\(\Leftrightarrow\sqrt{3}>1\)
\(\Leftrightarrow\sqrt{3}-1>0\)
\(\Leftrightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)(2)
Từ (1) và (2) suy ra \(VT=\sqrt{3}-1-\sqrt{3}=-1=VP\)(đpcm)
b) Ta có: \(VP=\left(\sqrt{5}+2\right)^2\)
\(=\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}\cdot2+2^2\)
\(=5+4\sqrt{5}+4\)
\(=9+4\sqrt{5}=VT\)(đpcm)
c) Ta có: \(VT=\sqrt{9+4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{4+2\cdot2\cdot\sqrt{5}+5}-\sqrt{5}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{5}\)
\(=\left|2+\sqrt{5}\right|-\sqrt{5}\)
\(=2+\sqrt{5}-\sqrt{5}=2=VP\)(đpcm)
d) Ta có: \(VT=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
\(=\sqrt{16+2\cdot4\cdot\sqrt{7}+7}-\sqrt{7}\)
\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
\(=\left|4+\sqrt{7}\right|-\sqrt{7}\)
\(=4+\sqrt{7}-\sqrt{7}\)
\(=4=VP\)(đpcm)
a. 9+4\(\sqrt{5}\)=(\(\sqrt{5}\)+2)2
VT: 9+4\(\sqrt{5}\)=2\(^2\)+2.2.\(\sqrt{5}\)+(\(\sqrt{5}\))\(^2\)=(2+\(\sqrt{5}\))\(^2\)=VP
b. \(\sqrt{23+8\sqrt{7}}\)-\(\sqrt{7}\)=4
\(\Leftrightarrow\)\(\sqrt{4^2+2.4\sqrt{7}+\left(\sqrt{7}\right)^2}\)-\(\sqrt{7}\)=4
\(\Leftrightarrow\)\(\sqrt{4+\sqrt{7}}^2\)-\(\sqrt{7}\)=4
\(\Leftrightarrow\)4+\(\sqrt{7}\)-\(\sqrt{7}\)=4
\(\Leftrightarrow\)4=4
\(\Rightarrow\)VT=VP
\(\sqrt{5}\)\(\sqrt{5}\)
Cái dòng \(\sqrt{5}\)\(\sqrt{5}\) máy mình bị lỗi nên đánh thừa thông cảm nha.
1)d) \(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
\(=\sqrt{4^2+2.4.\sqrt{7}+\sqrt{7^2}}-\sqrt{7}\)
\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
\(=4+\sqrt{7}-\sqrt{7}\)
\(=4\)
a) \(\sqrt{9-4\sqrt{5}}+\sqrt{5}\)
=\(\sqrt{\left(\sqrt{2}\right)^2-2.2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{5}\)
=\(\sqrt{\left(\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{5}\)
=\(\left|\sqrt{2}-\sqrt{5}\right|+\sqrt{5}\)
=\(\sqrt{2}-\sqrt{5}+\sqrt{5}\)
=\(\sqrt{2}\)
a,\(\sqrt{23-8\sqrt{7}}-\sqrt{7}=\sqrt{16-8\sqrt{7}+7}-\sqrt{7}=\sqrt{\left(4-\sqrt{7}\right)^2}-\sqrt{7}=\left|4-\sqrt{7}\right|-\sqrt{7}=4-\sqrt{7}-\sqrt{7}=4\)
a)\(\sqrt{13-4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{12-2.2\sqrt{3}.1+1}+\sqrt{4-2.2.\sqrt{3}+3}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2\sqrt{3}-1\right|+\left|2-\sqrt{3}\right|\)
\(=2\sqrt{3}-1+2-\sqrt{3}=\sqrt{3}+1\)
b)\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{5-2\sqrt{5}.1+1}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)=2\sqrt{5}\)
c)\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)=2\)
d)\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{4+2.2\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{3}+3}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)=4\)
e)\(\sqrt{9+4\sqrt{5}}=\sqrt{5+2.\sqrt{5}.2+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)
f)\(\sqrt{23+8\sqrt{7}}=\sqrt{16+2.4.\sqrt{7}+7}=\sqrt{\left(4+\sqrt{7}\right)^2}=4+\sqrt{7}\)