K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2015

ta có tam giác MNP vuông tại M,áp dụng định lý pytago ta có

NP2=NM2+MP2 hay NP2=42+32 =>NP2=16+9=25=>NP=5

Đáp án D

12 tháng 5 2017

Đáp án D

a: NP^2=MN^2+MP^2

=>ΔMNP vuông tại M

b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

=>DM=DE

a: Xét ΔMNP vuông tại M có 

\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)

\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)

\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)

\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)

15 tháng 3 2022

 minh ko bt 

19 tháng 6 2017

Xin lỗi mình không biết làm!

14 tháng 2 2019

*Bn tự vẽ hình nha

a, Áp dụng đ/lý Py-ta-go vào tam giác vuông MHP ta cs

MH^2+ HP^2= MP^2

MH^2.           =MP^2-HP^2

MH^2            =20^2- 16^2

MH^2.           =400-256

MH^2            =144

=> MH=12cm

Áp dụng đ/lý Pytago vào tam giác vuông MHN ta cs

MN^2= NH^2+ MH^2

MN^2= 9^2 + 12^2

MN^2= 81+144

MN^2= 255

=>MN= 15cm

7 tháng 5 2022

Tính NP

Xét \(\Delta\)MNP vuông tại M

Ta có NP2 = MN+ MP2

và MN = 8 cm

và MP = 4 cm

=> NP2 = 82 + 42

=> NP2 = 64 + 16

=> NP2 = 80 

=> NP = \(\sqrt{\text{80}}\) = 4\(\sqrt{\text{5}}\) cm.

7 tháng 5 2022

Áp dụng định lí Pytago trong △MNP vuông tạ M có

MN2+MP2 = NP2

hay 82 +42 = NP2

642 + 162 = NP2

NP2=\(\sqrt{80}\)

NP= \(4\sqrt{5}\)

AH
Akai Haruma
Giáo viên
27 tháng 12 2021

Đề không đủ dữ kiện. Bạn coi lại đề.

8 tháng 11 2023

Áp dụng định lý Py-ta-go cho tam giác MNP vuông tại M:

\(MN^2+MP^2=NP^2\)

Thay số: \(7^2+MP^2=25^2\)

\(\Rightarrow MP=24\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông MNP, đường cao MH ta có:

\(MK.NP=MN.MP\)

Thay số: \(MK.25=7.24\Rightarrow MK=6,72\left(cm\right)\)

Áp dụng định lý Py - ta - go cho tam giác MNK vuông tại K ta có:

\(MK^2+NK^2=MN^2\)

Thay số: \(6,72^2+NK^2=7^2\Rightarrow NK=1,96cm\)

8 tháng 11 2023

thanks bn

 

Xét ΔMNP vuông tại M có MH là đường caop

nên \(NM^2=NH\cdot NP\)

=>\(NP\cdot7=10^2=100\)

=>\(NP=\dfrac{100}{7}\left(cm\right)\)

ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(MP^2=NP^2-MN^2=\left(\dfrac{100}{7}\right)^2-10^2=\dfrac{5100}{49}\)

=>\(MP=\dfrac{10\sqrt{51}}{7}\left(cm\right)\)

\(\widehat{HMP}+\widehat{HMN}=90^0\)

\(\widehat{HMN}+\widehat{N}=90^0\)

=>\(\widehat{HMP}=\widehat{N}\)

Xét ΔMNP vuông tại M có \(sinN=\dfrac{MP}{NP}\)

=>\(sinHMP=\dfrac{10\sqrt{51}}{7}:\dfrac{100}{7}=\dfrac{\sqrt{51}}{10}\)

a: Ta có: ΔMNP vuông tại M

=>\(MN^2+MP^2=NP^2\)

=>\(NP^2=9^2+12^2=225\)

=>\(NP=\sqrt{225}=15\left(cm\right)\)

Xét ΔMNP có MI là phân giác

nên \(\dfrac{IN}{MN}=\dfrac{IP}{MP}\)

=>\(\dfrac{IN}{9}=\dfrac{IP}{12}\)

=>\(\dfrac{IN}{3}=\dfrac{IP}{4}\)

mà IN+IP=NP=5cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{IN}{3}=\dfrac{IP}{4}=\dfrac{IN+IP}{3+4}=\dfrac{5}{7}\)

=>\(IN=3\cdot\dfrac{5}{7}=\dfrac{15}{7}\left(cm\right);IP=5\cdot\dfrac{4}{7}=\dfrac{20}{7}\left(cm\right)\)

 b: Diện tích tam giác MNP là:

\(S_{MNP}=\dfrac{1}{2}\cdot MN\cdot MP=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)

Ta có: \(\dfrac{IN}{3}=\dfrac{IP}{4}\)

=>\(\dfrac{IN}{IP}=\dfrac{3}{4}\)

=>\(\dfrac{IN}{IP+IN}=\dfrac{3}{7}\)

=>\(\dfrac{IN}{PN}=\dfrac{3}{7}\)

=>\(S_{MNI}=\dfrac{3}{7}\cdot S_{MNP}=\dfrac{3}{7}\cdot54=\dfrac{162}{7}\left(cm^2\right)\)