![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
áp dụng định lí Py Ta GO vào tam giác vuông MNP ta có
\(NP^2=NM^2+NP^2\)
\(NP=\sqrt{MN^2+MP^2}=\sqrt{8^2+6^2}=10cm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: NP^2=MN^2+MP^2
=>ΔMNP vuông tại M
b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
góc MND=góc END
=>ΔNMD=ΔNED
=>DM=DE
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Xét tam giác END và tam giác MND, có
\(\widehat{MND}=\widehat{DNE}=30^o\)(vì ND là tia phân giác)
\(\widehat{M}=\widehat{E}=90^o\)
ND là cạnh chung
\(\Rightarrow\Delta END=\Delta MND\)
\(\RightarrowĐPCM\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ta có: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
hay HN=HP
b: NH=NP/2=8/2=4(cm)
=>MH=3(cm)
c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có
MH chung
\(\widehat{DMH}=\widehat{EMH}\)
Do đó: ΔMDH=ΔMEH
Suy ra: HD=HE
hay ΔHED cân tại H
Tính NP
Xét \(\Delta\)MNP vuông tại M
Ta có NP2 = MN2 + MP2
và MN = 8 cm
và MP = 4 cm
=> NP2 = 82 + 42
=> NP2 = 64 + 16
=> NP2 = 80
=> NP = \(\sqrt{\text{80}}\) = 4\(\sqrt{\text{5}}\) cm.
Áp dụng định lí Pytago trong △MNP vuông tạ M có
MN2+MP2 = NP2
hay 82 +42 = NP2
642 + 162 = NP2
NP2=\(\sqrt{80}\)
NP= \(4\sqrt{5}\)