K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Góc ở vị trí so le trong với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_4}}\)

Góc ở vị trí đồng vị với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_2}}\)

b) Vì a // b nên:

+) \(\widehat {{A_4}} = \widehat {{B_2}}\)( 2 góc so le trong), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)

+) \(\widehat {{A_2}} = \widehat {{B_2}}\) ( 2 góc đồng vị), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_2}} = 40^\circ \)

Ta có: \(\widehat {{B_2}} + \widehat {{B_3}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ  + \widehat {{B_3}} = 180^\circ  \Rightarrow \widehat {{B_3}} = 180^\circ  - 40^\circ  = 140^\circ \)

c) Ta có: \(\widehat {{B_2}} + \widehat {{B_1}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ  + \widehat {{B_1}} = 180^\circ  \Rightarrow \widehat {{B_1}} = 180^\circ  - 40^\circ  = 140^\circ \)

Vì a // b nên \(\widehat {{A_1}} = \widehat {{B_1}}\) (2 góc đồng vị) nên \(\widehat {{A_1}} = 140^\circ \)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (2 góc kề bù)

\( \Rightarrow \widehat {{A_1}} + 40^\circ  = 180^\circ \)

\( \Rightarrow \widehat {{A_1}} = 180^\circ  - 40^\circ  = 140^\circ \)

Ta có: \(\widehat {{A_1}} = \widehat {{A_3}}\) (2 góc đối đỉnh), mà \(\widehat {{A_1}} = 140^\circ \) nên \(\widehat {{A_3}} = 140^\circ \)

\(\widehat {{A_2}} = \widehat {{B_4}}\)(2 góc đối đỉnh), mà \(\widehat {{A_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)

Vì \(\widehat {{A_2}} = \widehat {{B_4}} = 40^\circ \), mà 2 góc này ở vị trí so le trong

\( \Rightarrow \) 2 góc đồng vị bằng nhau nên

 \(\begin{array}{l}\widehat {{A_1}} = \widehat {{B_1}} = 140^\circ ;\widehat {{A_2}} = \widehat {{B_2}} = 40^\circ ;\\\widehat {{A_3}} = \widehat {{B_3}} = 140^\circ ;\widehat {{A_4}} = \widehat {{B_4}} = 40^\circ \end{array}\)

b) Ta có:

\(\begin{array}{l}\widehat {{A_1}} + \widehat {{B_4}} = 140^\circ  + 40^\circ  = 180^\circ \\\widehat {{A_2}} + \widehat {{B_3}} = 40^\circ  + 140^\circ  = 180^\circ \end{array}\)

24 tháng 11 2017

các bn giải giúp mình vs

30 tháng 10 2016

35 o 100 o O x y z \(\widehat{xOz}+\widehat{zOy}=\widehat{xOy}\\\widehat{xOz}+35^o=100^o\\ \widehat{xOy}=100^o-35^o\\ \widehat{xOy}=65^o \)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Xét tam giác \(OPH\) tam giác \(PEH\) ta có:

\(\widehat {HOP} = \widehat {HPE}\) (giả thuyết)

\(\widehat {OPH} = \widehat {PEH}\) (giả thuyết)

Do đó, \(\Delta OPH\backsim\Delta PEH\) (g.g)

Suy ra, \(\frac{{PH}}{{EH}} = \frac{{OH}}{{PH}} \Rightarrow P{H^2} = OH.EH = 4.6 \Rightarrow P{H^2} = 24 \Leftrightarrow PH = \sqrt {24}  = 2\sqrt 6 \).

Vậy \(PH = 2\sqrt 6 \).

b) Xét tam giác \(AME\) tam giác \(AFM\) ta có:

\(\widehat {AME} = \widehat {AFM}\) (giả thuyết)

\(\widehat A\) chung

Do đó, \(\Delta AME\backsim\Delta AFM\) (g.g)

Suy ra, \(\frac{{AM}}{{AF}} = \frac{{AE}}{{AM}} \Rightarrow A{M^2} = AF.AE\) (điều phải chứng minh).

24 tháng 11 2017

các bn giải giúp mihf mình k cho