K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

các bn giải giúp mình vs

10 tháng 4 2021

a) Chứng minh tứ giác IEHFIEHF nội tiếp được đường tròn.

Ta có ∠AEB=∠AFB=900∠AEB=∠AFB=900 (góc nội tiếp chắn nửa đường tròn) ;

⇒AE⊥EB,AF⊥EB⇒AE⊥EB,AF⊥EB hay BE⊥AI;AF⊥BI⇒∠IEH=∠IFH=900BE⊥AI;AF⊥BI⇒∠IEH=∠IFH=900.

Xét tứ giác IEHFIEHF có: ∠IEH+∠IFH=900+900=1800⇒∠IEH+∠IFH=900+900=1800⇒ Tứ giác IEHFIEHF là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 18001800).

b) Chứng minh ∠AIH=∠ABE∠AIH=∠ABE.

Cách 1:

Ta có IEHFIEHF là tứ giác nội tiếp (cmt) ⇒∠EIH=∠EFH⇒∠EIH=∠EFH (hai góc nội tiếp cùng chắn cung EHEH)

Hay ∠AIH=∠EFA.∠AIH=∠EFA.

Mà ∠EBA=∠EFA∠EBA=∠EFA (hai góc nội tiếp cùng chắn cung AFAF của (O)(O))

⇒∠AIH=∠ABE(=∠EFH).(dpcm)⇒∠AIH=∠ABE(=∠EFH).(dpcm)

Cách 2:

Xét tam giác IABIAB có hai đường cao AF,BEAF,BE cắt nhau tại H⇒HH⇒H là trực tâm tam giác IABIAB.

⇒IH⊥AB⇒IH⊥AB hay IK⊥ABIK⊥AB tại KK.

Xét tam giác vuông AIKAIK có: ∠AIK+∠IAK=900⇔∠AIH+∠IAB=900∠AIK+∠IAK=900⇔∠AIH+∠IAB=900.

Xét tam giác vuông ABEABE có: ∠ABE+∠EAB=900⇔∠ABE+∠IAB=900∠ABE+∠EAB=900⇔∠ABE+∠IAB=900.

Do đó ∠AIH=∠ABE∠AIH=∠ABE.

c) Chứng minh cos∠ABP=PK+BKPA+PBcos⁡∠ABP=PK+BKPA+PB.

Nối PA,PBPA,PB ta có ∠APB=900∠APB=900 (góc nội tiếp chắn nửa đường tròn).

Xét tam giác BPKBPK và tam giác BAPBAP có:

∠ABP∠ABP chung;

∠BKP=∠BPA=900;∠BKP=∠BPA=900;

⇒ΔBPK∼ΔBAP(g.g)⇒PKPA=BKPB⇒ΔBPK∼ΔBAP(g.g)⇒PKPA=BKPB (hai cặp cạnh tương ứng tỉ lệ).

Áp dụng tính chất dãy tỉ số bằng nhau ta có: PKPA=BKPB=PK+BKPA+PBPKPA=BKPB=PK+BKPA+PB (1).

Xét tam giác vuông BKPBKP ta có: cos∠ABP=cos∠KPB=BKPBcos⁡∠ABP=cos⁡∠KPB=BKPB (2).

Từ (1) và (2) ta có cos∠ABP=PK+BKPA+PBcos⁡∠ABP=PK+BKPA+PB.

d) Gọi SS là giao điểm cuả tia BFBF và tiếp tuyến tại AA của nửa đường tròn (O)(O). Khi tứ giác AHISAHIS nội tiếp được đường tròn, chứng minh EFEF vuông góc với EKEK.

Xét tứ giác AEHKAEHK có: ∠AEH+∠AKH=900+900=1800⇒∠AEH+∠AKH=900+900=1800⇒ Tứ giác AEHKAEHK là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 18001800).

⇒∠HEK=∠HAK=FAB⇒∠HEK=∠HAK=FAB (hai góc nội tiếp cùng chắn cung HKHK);

Lại có ∠FAB=∠FEB∠FAB=∠FEB (hai góc nội tiếp cùng chắn cung FBFB của (O)(O));

⇒∠HEK=∠FEB⇒EB⇒∠HEK=∠FEB⇒EB là phân giác của ∠FEK∠FEK ⇒∠FEK=2∠FEB=2∠FAB⇒∠FEK=2∠FEB=2∠FAB (3).

Ta có: {IH⊥AB(cmt);SA⊥AB(gt)⇒IH//SA⇒{IH⊥AB(cmt);SA⊥AB(gt)⇒IH//SA⇒ Tứ giác AHISAHIS là hình thang (Tứ giác có 2 cạnh đối song song).

Khi AHISAHIS là tứ giác nội tiếp thì ∠SAH+∠SIH=1800∠SAH+∠SIH=1800 (tổng hai góc đối của tứ giác nội tiếp) ;

Mà ∠SAH+∠AHI=1800∠SAH+∠AHI=1800 (hai góc trong cùng phía bù nhau) ;

⇒∠SIH=∠AHI⇒⇒∠SIH=∠AHI⇒ Tứ giác AHISAHISlà hình thang cân.

Do đó ∠ISA=∠SAH∠ISA=∠SAH (Tính chất hình thang cân) hay ∠BSA=∠SAF∠BSA=∠SAF.

Mà ∠SAF=∠SBA∠SAF=∠SBA (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AFAF );

⇒∠BSA=∠SBA⇒ΔSAB⇒∠BSA=∠SBA⇒ΔSAB vuông cân tại A⇒∠SBA=450A⇒∠SBA=450.

⇒ΔFAB⇒ΔFAB vuông cân tại F⇒∠FAB=450F⇒∠FAB=450 (4).

Từ (3) và (4) ta có ∠FEK=2∠FAB=2.450=900∠FEK=2∠FAB=2.450=900.

Vậy khi tứ giác AHISAHIS nội tiếp được đường tròn, chứng minh EFEF vuông góc với EKEK(đpcm).

1 tháng 7 2021

a, ta có : góc AEB = 90 độ

suy ra góc HEI = 90 độ

tương tự ta có góc HFI = 90 độ

suy ra : góc HEI + góc HFI = 180 độ 

suy ra IEHF nội tiếp đường tròn

b, góc AIH = AFE

mà góc ABE = góc AFE

suy ra góc AIH = góc ABE

20 tháng 6 2019

a) Chứng minh tứ giác OBDF nội tiếp.       

  Xác định tâm I đường tròn ngoại tiếp tứ OBDF. 

Giải :  

 Ta có: \(\widehat{DBO}=90^o\)và  \(\widehat{DFO}=90^o\)(tính chất tiếp tuyến)       

Tứ giác OBDF có \(\widehat{DBO}+\widehat{DFO}=90^o+90^o=180^o\)nên nội tiếp được trongmột đường tròn.           

  Tâm I đường tròn ngoại tiếp tứ giác OBDF là trung điểm của OD

20 tháng 6 2019

mk làm được phần a rồi đấy, ai giúp mk phần b,c,d thôi. cảm ơn 

tiện thể xem hộ xem đúng k nha

a: góc ACM=1/2*sđ cung AM=90 độ

góc BAD+góc ABD=90 độ

góc MAC+góc AMC=90 độ

mà góc ABD=góc AMC

nên góc BAD=góc MAC

b: góc AEB=góc ADB=90 độ

=>AEDB nội tiếp