K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 11 2019

Lời giải:

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x-1|+|x+2012|=|1-x|+|x+2012|\geq |1-x+x+2012|$

$\Leftrightarrow A\geq 2013$

Vậy GTNN của $A=2013$

Giá trị này đạt tại $(1-x)(x+2012)\geq 0\Leftrightarrow -2012\leq x\leq 1$

17 tháng 11 2019

Áp dụng BĐT dạng \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :

A = \(\left|x-1\right|+\left|x+2012\right|=\left|1-x\right|+\left|x+2012\right|\ge\left|1-x+x+2012\right|\)

\(\Leftrightarrow A\ge2013\)

Vậy GTNN của \(A=2013\)

Giastrij này đạt tại \(\left(1-x\right)\left(x+2012\right)\ge0\Leftrightarrow-2012\le x\le1\)

17 tháng 11 2019

\(A=\left|x-1\right|+\left|x+2012\right|\)

\(A=\left|1-x\right|+\left|x+2012\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(A\ge\left|1-x+x+2013\right|=2013\)

Dấu bằng xảy ra 

\(\Leftrightarrow\left(1-x\right)\left(x+2012\right)=0\)

\(\Leftrightarrow-2012\le x\le1\)

Vậy Min A= 2013 \(\Leftrightarrow-2012\le x\le1\)

14 tháng 1 2018

c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)

Vậy MinC = 2500 khi 50 =< x =< 56

14 tháng 1 2018

a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1

Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)

Vậy MinA = 1 khi 2011 =< x =< 2012

b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011| 

Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)

Mà \(\left|x-2011\right|\ge0\forall x\)

\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)

Vậy MinB = 2 khi x = 2011

Câu c để nghĩ 

29 tháng 10 2020

A = | x - 1 | + | x + 2012 |

= | 1 - x | + | x + 2012 |

≥ | 1 - x + x + 2012 | = 2013

Dấu "=" xảy ra khi ab ≥ 0

=> ( 1 - x )( x + 2012 ) ≥ 0

=> -2012 ≤ x ≤ 1

=> MinA = 2013 <=> -2012 ≤ x ≤ 1

29 tháng 10 2020

A=[x-1]+[x+2012] lớn hơn hoặc bằng x-1

Vậy x = 1

ĐKXĐ: \(x-2013\ge0\Leftrightarrow x\ge2013\)

Ta có:

\(A=\sqrt{x-2013-2\sqrt{x-2013}+1}+\sqrt{x-2013-90\sqrt{x-2013}+2025}\)

\(=\sqrt{\left(\sqrt{x-2013}-1\right)^2}+\sqrt{\left(\sqrt{x-2013}-45\right)^2}\)

\(=\left|\sqrt{x-2013}-1\right|+\left|\sqrt{x-2013}-45\right|\)

\(=\left|\sqrt{x-2013}-1\right|+\left|45-\sqrt{x-2013}\right|\)

\(\ge\left|\sqrt{x-2013}-1+45-\sqrt{x-2013}\right|\)

\(=\left|-1+45\right|=\left|44\right|=44\)

Vậy GTNN của A là 44, đạt được khi và chỉ khi \(\left(\sqrt{x-2013}-1\right)\left(45-\sqrt{x-2013}\right)\ge0\)

\(\Leftrightarrow1\le\sqrt{x-2013}\le45\)

\(\Leftrightarrow1\le x-2013\le2025\)

\(\Leftrightarrow2014\le x\le4038\left(tm\right)\)

3 tháng 1 2018

\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+2012\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+2012\)

Đặt  \(x^2-5x+4=t\) ta có:

            \(A=t\left(t+2\right)+2012\)

           \(=t^2+2t+1+2011\)

           \(=\left(t+1\right)^2+2011\)  \(\ge2011\)   \(\forall x\)

Dấu  "="   xảy ra \(\Leftrightarrow\)\(t+1=0\)

                          \(\Leftrightarrow\)\(x^2-5x+4+1=0\)

       MK lm đc có vậy thôi. bn tham khảo nhé

Min A = 2011

4 tháng 1 2018

Chỗ đặt của Giang mk nghĩ nên đặt t = x2 - 5x + 5 thì hơn xong áp dụng hằng đẳng thức số 3 sẽ dễ hơn! 

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

11 tháng 4 2019

Ta có:\(\left(x+y-3\right)^4\ge0;\left(x-2y\right)^2\ge0\Rightarrow\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)

\(\Rightarrow A=\left(x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)

Dấu bằng xảy ra khi và chỉ khi:

\(\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=3\\x=2y\end{cases}}\Rightarrow2y+y=3\Rightarrow y=1\Rightarrow x=2\)

Vậy \(A_{min}=2012\Leftrightarrow x=2\)

14 tháng 4 2019

cảm ơn bạn nhiều nhưng mình không biết kích

8 tháng 6 2016

Em mới học lớp 7