cho a>2 , b>2
Chứng tỏ: a.b > a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a > 2 ; a thuộc N*
=> ab > 2b
b > 2; b thuộc N*
=> ab > 2a
=> ab + ab > 2a + 2b
=> 2ab > 2(a + b)
=> ab > a + b (đpcm)
a + b < a . b
=> a + b là 1 tổng và 1 tổng thì ta có : a+ b = a+ b
=> a . b là 1 tích và 1 tích thì sẽ đc nhân nhiều lần lên phụ thuộc vào phép tính( a,b thuộc N*),ta có : a .b = a + a + a +...
=> Ta có ví dụ : a= 5;b=3.
=> 5 + 3 < 5 . 3
=> 8 < 15.
=> a+b<a.b
Xét hiệu a+b-ab=-(a-1)(b-1)+1
Vì \(\hept{\begin{cases}a>2\\b>a\end{cases}\Rightarrow\hept{\begin{cases}a-1>1\\b-1>1\end{cases}}}\)
=>(a-1)(b-1)>1
=>-(a-1)(b-1)<-1
=>-(a-1)(b-1)+1<0
=>-(a-1)(b-1)<0
=>a+b-ab<0
=>a+b<ab (đpcm)
Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
= 2(2+n)+ m(2+n)
= 4+ 2n+ 2m+ mn
= 4+ m+ m+ n+ n+ mn
= (4+ m+ n) +(m +n +mn)
= (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm
Vì: \(a>2\Rightarrow a-2>0.\)
\(b>2\Rightarrow b-2>0.\)
\(\Rightarrow\left(a-2\right).\left(b-2\right)>0\)
\(\Leftrightarrow ab-2a-2b+4>0\)
\(\Leftrightarrow ab+4>2.\left(a+b\right)\)
Ta có: \(a.b>2.2=4.\)
\(\Rightarrow ab+ab>ab+4>2.\left(a+b\right)\)
\(\Rightarrow2ab>2.\left(a+b\right)\)
\(\Rightarrow a.b>a+b\left(đpcm\right).\)
Chúc bạn học tốt!