Cho M = \(\frac{x-\sqrt{x}}{x+2\sqrt{x}+1}\) . Tìm x để M = \(\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)
\(M=3\)
Cho mình hỏi câu a của bạn phân số đầu tiên bạn vứt mất x ở mẫu của mik đâu rồi
P/s : sửa đề
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(P=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(P=\frac{-3\sqrt{x}-3x}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(P=\frac{-3\sqrt{x}\left(1+\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{-3\sqrt{x}}{\sqrt{x}+3}\)
b) \(P< -\frac{1}{2}\)
\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}+\frac{1}{2}< 0\)
\(\Leftrightarrow\frac{-6\sqrt{x}+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\frac{-5\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)
Mà \(2\left(\sqrt{x}+3\right)>0\)
\(\Rightarrow-5\sqrt{x}+3< 0\)
\(\Leftrightarrow-5\sqrt{x}< -3\)
\(\Leftrightarrow\sqrt{x}>\frac{3}{5}\)
\(\Leftrightarrow x>\frac{9}{25}\)
Vấy .................
c) \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
\(\Leftrightarrow-3\sqrt{x}+2\sqrt{x}-2-2+x=0\)
\(\Leftrightarrow-\sqrt{x}-4+x=0\)
\(\Leftrightarrow-\sqrt{x}\left(1-\sqrt{x}\right)=4\)
Còn lại lập bảng tự tìm giá trị của x là ra .( Chú ý : đối chiếu ĐKXĐ )
d)
\(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)
\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}\left(\sqrt{x}+3\right)+x\sqrt{x}-xm=x-3\sqrt{x}-m\sqrt{x}\)
\(\Leftrightarrow-3\sqrt{x}+x\sqrt{x}-xm-x+3\sqrt{x}+m\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(x+m\right)-x\left(m+1\right)=0\)
\(\Leftrightarrow\sqrt{x}\left[x+m-m\sqrt{x}-\sqrt{x}\right]=0\)
\(\Leftrightarrow\sqrt{x}\left[m\left(1-\sqrt{x}\right)-\sqrt{x}\left(1-\sqrt{x}\right)\right]=0\)
\(\Leftrightarrow\sqrt{x}=0;m-\sqrt{x}=0;1-\sqrt{x}=0\)
+) \(\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\)
+) \(1-\sqrt{x}=0\)
\(\Leftrightarrow x=1\left(TM\right)\)
+) \(m-\sqrt{x}=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-\sqrt{0}=0\\m-\sqrt{1}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}}\)
Vậy ..................
Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)
ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
Câu 1 :
Đk: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)
\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)
với x= 5 thoản mãn điều kiện, x=145 loại
Vậy \(S=\left\{5\right\}\)
\(\frac{x-\sqrt{x}}{x+2\sqrt{x}+1}=\frac{1}{3}\)
\(\Leftrightarrow3\left(x-\sqrt{x}\right)=x+2\sqrt{x}+1\)
\(\Leftrightarrow3x-3\sqrt{x}=x+2\sqrt{x}+1\)
\(\Leftrightarrow2x-5\sqrt{x}-1=0\)
Đặt \(t=\sqrt{x}\) ( đk: \(t\ge0\) ) phương trình trở thành:
\(2t^2-5t-1=0\)
\(\Delta=\left(-5\right)^2-4.2.\left(-1\right)=33>0\)
\(t_1=\frac{5+\sqrt{33}}{2.2}=\frac{5+\sqrt{33}}{4}\left(N\right)\)
\(t_2=\frac{5-\sqrt{33}}{2.2}=\frac{5-\sqrt{33}}{4}\left(L\right)\)
* Ta có \(t=\frac{5+\sqrt{33}}{4}\Leftrightarrow\sqrt{x}=\frac{5+\sqrt{33}}{4}\Leftrightarrow x=\left(\frac{5+\sqrt{33}}{4}\right)^2=\frac{29+5\sqrt{33}}{8}\)
Vậy \(x=\frac{29+5\sqrt{33}}{8}\)
Học tốt !!! :)