K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác DIE vuông tại I có IK là trung tuyến thuộc cạnh huyền DE nên: KI = KD = (1/2).ED (tính chất tam giác vuông)

Suy ra tam giác IKD cân tại K

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

4 tháng 10 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì đường tròn (O) và (O’) tiếp xúc ngoài tại A nên O, A và O’ thẳng hàng

Ta có: KB = KC (gt)

Trong đường tròn (O) ta có:

AB ⊥ DE tại K

Suy ra: KD = KE (đường kính vuông góc với dây cung)

Tứ giác BDCE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành.

Lại có: BC ⊥ DE

Suy ra tứ giác BDCE là hình thoi.

Cho đoạn thẳng OA= R, vẽ đường tròn(O,R). Trên đường tròn (O,R) lấy H bất kì sao cho AH<R. Qua H vẽ đường thẳng A tiếp xúc với đường tròn (O,R). Trên đường thẳng a lấy B và C sao cho H nằm giữa B và C, và AB=AC=R. Vẽ HM vương góc với OB ( M thuộc OB) và HN vuông góc với với OC ( N thuộc OC)a) Chứng minh OM.OB=ON.OC và MN luôn đi qua một điểm cố địnhb)Chứng minh: OB.OC=2Rc)Tìm giá trị lớn nhất...
Đọc tiếp

Cho đoạn thẳng OA= R, vẽ đường tròn(O,R). Trên đường tròn (O,R) lấy H bất kì sao cho AH<R. Qua H vẽ đường thẳng A tiếp xúc với đường tròn (O,R). Trên đường thẳng a lấy B và C sao cho H nằm giữa B và C, và AB=AC=R. Vẽ HM vương góc với OB ( M thuộc OB) và HN vuông góc với với OC ( N thuộc OC)

a) Chứng minh OM.OB=ON.OC và MN luôn đi qua một điểm cố định

b)Chứng minh: OB.OC=2R

c)Tìm giá trị lớn nhất của diện tích am giác OMN khi H thay đổi

Cho đoạn thẳng OA= R, vẽ đường tròn(O,R). Trên đường tròn (O,R) lấy H bất kì sao cho AH<R. Qua H vẽ đường thẳng A tiếp xúc với đường tròn (O,R). Trên đường thẳng a lấy B và C sao cho H nằm giữa B và C, và AB=AC=R. Vẽ HM vương góc với OB ( M thuộc OB) và HN vuông góc với với OC ( N thuộc OC)

a) Chứng minh OM.OB=ON.OC và MN luôn đi qua một điểm cố định

b)Chứng minh: OB.OC=2R

c)Tìm giá trị lớn nhất của diện tích am giác OMN khi H thay đổi

0

Bài 1:

a: Ta có: ΔOBC cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}\)

=>\(\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBKD nội tiếp

BD là đường kính

Do đó: ΔBKD vuông tại K

=>BK\(\perp\)KD tại K

=>BK\(\perp\)AD tại K

Xét ΔABD vuông tại B có BK là đường cao

nên \(AK\cdot AD=AB^2\left(1\right)\)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AD=AH\cdot AO\)

Câu 8:

a: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

=>\(\widehat{CAB}+\widehat{CBA}=90^0\)

=>\(\widehat{CBA}=60^0\)

Xét ΔOBC có OB=OC và \(\widehat{OBC}=60^0\)

nên ΔOCB đều

=>BC=OB=R

=>BO=BM=R

=>B là trung điểm của OM

Xét ΔOCM có

CB là đường trung tuyến

CB=1/2OM

Do đó: ΔOCM vuông tại C

b: Ta có: OB+BM=OM

=>OM=R+R=2R

Ta có: ΔOCM vuông tại C

=>\(OC^2+CM^2=OM^2\)

=>\(CM^2=\left(2R\right)^2-R^2=3R^2\)

a: ΔOBC cân tại O

mà OA là đường cao

nên OA là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O;R)

b: \(\widehat{MOA}+\widehat{COA}=\widehat{MOC}=90^0\)

\(\widehat{MAO}+\widehat{BOA}=90^0\)(ΔBAO vuông tại B)

mà \(\widehat{COA}=\widehat{BOA}\)

nên \(\widehat{MOA}=\widehat{MAO}\)

=>ΔMAO cân tại M