Tìm n thuộc N để các số sau nguyên tố cùng nhau :a, 4n+3 và 2n+3
b, 7n+13 và 2n+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)+)Gọi d là số nguyên tố và là ƯCLN(4n+3,2n+3)
=>4n+3\(⋮\)d;2n+3\(⋮\)d
+)4n+3\(⋮\)d(1)
+)2n+3\(⋮\)d
=>2.(2n+3)\(⋮\)d
=>4n+6\(⋮\)d(2)
Từ(1) và (2)
=>(4n+6)-(4n+3)\(⋮\)d
=>4n+6-4n-3\(⋮\)d
=>3\(⋮\)d
Mà d nguyên tố
=>d=3
=>4n+3\(⋮\)d
=>4n+3\(⋮\)3
=>4n+3=3k(k\(\in\)N)
=>4n =3k+3
4n =3.(k+1)
n =3.(k+1):4
Mà 3 ko chia hết cho 4
=>k+1\(⋮\)4
=>k+1=4z(z\(\in\)N)
=>n =3.4z:4
=>n =3z
=>n \(\ne\)3z thì 4n+3 và 2n+3 nguyên tố cùng nhau
b)Làm tương tự phần a nha
Chúc bn học tốt
a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:
\(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)
⇒ 4n + 6 - (4n + 3) ⋮ d ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d
⇒ d = 1; 3
Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì
2n + 3 không chia hết cho 3
2n không chia hết cho 3
n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)
a, Gọi d = ƯCLN(7n+13;2n+4).
=>2(7n+13) ⋮ d; 7(2n+4) ⋮ d
=> [(14n+28) – (14n+6)] ⋮ d
=> 2 ⋮ d => d = {1;2}
Nếu d = 2 thì (7n+3) ⋮ 2 => [7(n+1)+6] ⋮ 2 => 7(n+1) ⋮ 2
Mà ƯCLN(7,2) = 1 nên (n+1) ⋮ 2 => n = 2k–1
Vậy để 7n+13 và 2n+4 nguyên tố cùng nhau thì n ≠ 2k–1
b, Gọi d = ƯCLN(4n+3;2n+3)
=> (4n+3) ⋮ d; 2(2n+3) ⋮ d
=> [(4n+6) – (4n+3)] ⋮ d
=> 3 ⋮ d => d = {1;3}
Nếu d = 3 thì (4n+3) ⋮ 3 => [3(n+1)+n] ⋮ 3 => n ⋮ 3 => n = 3k
Vậy để 4n+3 và 2n+3 nguyên tố cùng nhau thì n ≠ 3k
Tìm n ∈ N để:( 4n+ 3) và 2n+ 3 nguyên tố cùng nhau và 2n + 3 4n + 3 tối giảm. b) 7n+ 13 và 2n+ 4 nguyên tố cùng nhau. b, giả sử d = ( 7n +13 ; 2n + 4) ta có 7n + 13 = 3.( 2n +4 ) + (n + 1) 2n + 4 = 2.(n +1) + 2 => d = ( n +1; 2) Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1 => n + 1 không chia hết cho 2 => n+ 1 = 2k + 1 , k thuộc N => n = 2k Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau
b, giả sử d = ( 7n +13 ; 2n + 4)
ta có 7n + 13 = 3.( 2n +4 ) + (n + 1)
2n + 4 = 2.(n +1) + 2
=> d = ( n +1; 2)
Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1
=> n + 1 không chia hết cho 2
=> n+ 1 = 2k + 1 , k thuộc N
=> n = 2k
Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau
a. Gọi $d=ƯCLN(4n+3, 2n+3)$
$\Rightarrow 4n+3\vdots d; 2n+3\vdots d$
$\Rightarrow 2(2n+3)-(4n+3)\vdots d$
$\Rightarrow 3\vdots d$
Để 2 số nguyên tố cùng nhau thì $d$ chỉ có thể bằng $1$.
Điều này xảy ra khi $(d,3)=1$
$\Rightarrow 2n+3\not\vdots 3$
$\Rightarrow 2n\not\vdots 3$
$\Rightarrow n\not\vdots 3$
Vậy mọi số nguyên $n$ không chia hết cho $3$ thì thỏa mãn đề bài.
b.
Gọi $d=ƯCLN(7n+13, 2n+4)$
$\Rightarrow 7n+13\vdots d; 2n+4\vdots d$
$\Rightarrow 2(7n+13)-7(2n+4)\vdots d$
$\Rightarrow -2\vdots d$
Để 2 số nguyên tố cùng nhau thì $d=1$. Điều này xảy ra khi $(2,d)=1$
$\Rightarrow 7n+13, 2n+4$ không đồng thời chia hết cho $2$.
Mà $2n+4\vdots 2$ rồi nên chỉ cần $7n+13\not\vdots 2$
$\Rightarrow 7n+13$ lẻ
$\Rightarrow 7n$ chẵn
$\Rightarrow n$ chẵn.