Rút gọn
A = m(3m -2m^2 -7) - (5-m)(m^2 +3) + (m^2 -m -14)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
\(A=\frac{3m^3+6m^2}{m^3+2m^2+m+2}=\frac{3m^2\left(m+2\right)}{m^2\left(m+2\right)+m+2}.\)
\(=\frac{3m^2\left(m+2\right)}{\left(m+2\right)\left(m^2+1\right)}=\frac{3m^2}{m^2+1}\)
Để \(A=3\Rightarrow\frac{3m^2}{m^2+1}=3\)
\(\Rightarrow3m^2=3\left(m^2+1\right)\)
\(\Rightarrow m^2=m^2+1\)
\(\Rightarrow0=1\)(vô lí )
Vậy không có giá trị nào của m để A = 3
a) A xác định khi \(m^3+2m^2+m+2\ne0\)
\(\Leftrightarrow m^2\left(m+2\right)+\left(m+2\right)\ne0\)\(\Leftrightarrow\left(m^2+1\right)\left(m+2\right)\ne0\)
\(\Rightarrow m+2\ne0\)\(\Rightarrow m\ne-2\)\(\RightarrowĐKXĐ:x\ne-2\)
b) \(A=\frac{3m^3+6m^2}{m^3+2m^2+m+2}=\frac{3m^2\left(m+2\right)}{\left(m^2+1\right)\left(m+2\right)}=\frac{3m^2}{m^2+1}\)
c) \(A=3\)\(\Leftrightarrow\frac{3m^2}{m^2+1}=3\)\(\Leftrightarrow3m^2=3\left(m^2+1\right)\)
\(\Leftrightarrow3m^2=3m^2+3\)\(\Leftrightarrow3m^2-3m^2=3\)\(\Leftrightarrow0=3\)(vô lý)
Vậy không có giá trị m thoả mãn A=3
\(a)\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)
\(=\frac{7+2\sqrt{35}+5+7-2\sqrt{35}+5}{7-5}\)
\(=\frac{24}{2}\)
\(=12\)
\(b)\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)+\left(2+\sqrt{8}-\sqrt{6}\right)}{2+\sqrt{2}-\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)+\sqrt{2}\left(\sqrt{2}+2-\sqrt{3}\right)}{2+\sqrt{2}-\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}\right)}{2+\sqrt{2}-\sqrt{3}}\)
\(=1+\sqrt{2}\)
\(c)A=\left(\sqrt{3}+1\right)\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{70-14\sqrt{3}-30\sqrt{3}+18}{25-3}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{88-44\sqrt{3}}{22}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\frac{44\left(2-\sqrt{3}\right)}{22}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{2\left(2-\sqrt{3}\right)}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)
\(A=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)
\(A=3-1=2\)
P/s: nếu đề là vậy thì t ra kết quả như vậy ạ, nhưng lần sau khi đăng câu hỏi bạn nên viết rõ hơn ra nhé
2)
\(A=\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\)
\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{-a^2+8a-16}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{-\left(a-4\right)^2}{a-4}=4-a\)
1: Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=5m+1\\x+y=3m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=3m+2-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=\dfrac{12m+8-5m-1}{4}=\dfrac{7m+7}{4}\end{matrix}\right.\)
Ta có: \(x^2+2y^2=9\)
\(\Leftrightarrow\left(\dfrac{5m+1}{4}\right)^2+2\cdot\left(\dfrac{7m+7}{4}\right)^2=9\)
\(\Leftrightarrow\dfrac{25m^2+10m+1}{16}+\dfrac{2\cdot\left(49m^2+98m+49\right)}{16}=9\)
\(\Leftrightarrow25m^2+10m+1+98m^2+196m+98-144=0\)
\(\Leftrightarrow123m^2+206m-45=0\)
Đến đây bạn tự làm nhé, chỉ cần giải phương trình bậc hai bằng delta thôi
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
\(A=m\left(3m-2m^2-7\right)-\left(5-m\right)\left(m^2+3\right)+\left(m^2-m-14\right)\)
\(=3m^2-2m^3-7m-\left(5m^2-m^3+15-3m\right)+m^2-m-14\)
\(=4m^2-2m^3-8m-5m^2+m^3-15+3m-14\)
\(=-m^2-m^3-5m-29\)