K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

\(A=m\left(3m-2m^2-7\right)-\left(5-m\right)\left(m^2+3\right)+\left(m^2-m-14\right)\)

\(=3m^2-2m^3-7m-\left(5m^2-m^3+15-3m\right)+m^2-m-14\)

\(=4m^2-2m^3-8m-5m^2+m^3-15+3m-14\)

\(=-m^2-m^3-5m-29\)

5 tháng 12 2019

\(a,\)\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(A=\frac{3m^3+6m^2}{m^3+2m^2+m+2}=\frac{3m^2\left(m+2\right)}{m^2\left(m+2\right)+m+2}.\)

\(=\frac{3m^2\left(m+2\right)}{\left(m+2\right)\left(m^2+1\right)}=\frac{3m^2}{m^2+1}\)

Để \(A=3\Rightarrow\frac{3m^2}{m^2+1}=3\)

\(\Rightarrow3m^2=3\left(m^2+1\right)\)

\(\Rightarrow m^2=m^2+1\)

\(\Rightarrow0=1\)(vô lí )

Vậy không có giá trị nào của m để A = 3

6 tháng 12 2019

a) A xác định khi \(m^3+2m^2+m+2\ne0\)

\(\Leftrightarrow m^2\left(m+2\right)+\left(m+2\right)\ne0\)\(\Leftrightarrow\left(m^2+1\right)\left(m+2\right)\ne0\)

\(\Rightarrow m+2\ne0\)\(\Rightarrow m\ne-2\)\(\RightarrowĐKXĐ:x\ne-2\)

b) \(A=\frac{3m^3+6m^2}{m^3+2m^2+m+2}=\frac{3m^2\left(m+2\right)}{\left(m^2+1\right)\left(m+2\right)}=\frac{3m^2}{m^2+1}\)

c) \(A=3\)\(\Leftrightarrow\frac{3m^2}{m^2+1}=3\)\(\Leftrightarrow3m^2=3\left(m^2+1\right)\)

\(\Leftrightarrow3m^2=3m^2+3\)\(\Leftrightarrow3m^2-3m^2=3\)\(\Leftrightarrow0=3\)(vô lý)

Vậy không có giá trị m thoả mãn A=3

8 tháng 8 2017

Ta có :

a)\(\frac{m^4-m}{2m^2+2m+2}=\frac{m\left(m^3-1\right)}{2\left(m^2+m+1\right)}=\frac{m\left(m-1\right)\left(m^2+m+1\right)}{2\left(m^2+m+1\right)}=\frac{m^2-m}{2}\)

b) \(\frac{ab^2+a^3-a^2b}{a^3b+b^4}=\frac{a\left(a^2-ab+b^2\right)}{b\left(a^3+b^3\right)}=\frac{a\left(a^2-ab+b^2\right)}{b\left(a+b\right)\left(a^2-ab+b^2\right)}=\frac{a}{ab+b^2}\)

a: \(M=\dfrac{x^2\left(x-2\right)}{x-2}+\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}=x^2+x+1\)

b: Để M=7 thì (x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(loại)

Vậy: x=-3

6 tháng 4 2023

\(M=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{x^2-4}\left(dkxd:x\ne\pm2\right)\)

\(=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4\left(x-2\right)+3\left(x+2\right)-\left(5x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4x-8+3x+6-5x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2}{x+2}\)

Để \(M=\dfrac{2}{5}\) thì \(\dfrac{2}{x+2}=\dfrac{2}{5}\)

Suy ra :

\(2.5=2\left(x+2\right)\)

\(\Leftrightarrow2x+4=10\)

\(\Leftrightarrow x=3\)

Vậy \(M=\dfrac{2}{5}\) thì x = 3

22 tháng 4 2021

a.m+2>n+2

Ta có: m >n

=>m+2 > n+2 (cộng hai vế với 2)

do đó m+2>n+2

b, -2m < -2n

Ta có: m > n

=> -2m < -2n (nhân hai vế với -2)

do đó -2m<-2n

c,2m-5>2n-5

Ta có: m>n

=>2m>2n (nhân hai vế với 2)

=>2m-5>2n-5 ( cộng hai vế với -5)

do đó 2m-5>2n-5

d,4-3m<4-3n

Ta có :m>n

=> -3m<-3n (nhân hai vế với -3)

=> 4-3m<4-3n (cộng 2 vế với 4)