K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

bạn ghi tõ đề ra đc ko

8 tháng 9 2019

1.

a) (a3)5 : a10 . (a3)4 = a15 : a10 . a12 = a5 . a12 = a17

b) (23)4 . (24)3 : 226 = 212 . 212 : 226 = 224 : 226 = 224 : 224 : 22 = 1 : 22 = 1/ 22 ( tính theo cách lớp 6 )

c) 49 : 44 . (a2)6 = 45 . a12

22 tháng 10 2023

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

9 tháng 9 2020

a)   \(=5x^2+40x+80+4\left(x^2-10x+25\right)-9\left(x+4\right)\left(x-4\right)\)

\(=5x^2+40x+80+4x^2-40x+100-9x^2+144\)

\(=9x^2-9x^2+40x-40x+324\)

\(=324\)

b)   \(=x^2+4xy+4y^2+4x^2-4xy+y^2-5x^2+5y^2-10y^2+90\)

\(=5x^2-5x^2+10y^2-10y^2+\left(4xy-4xy\right)+90\)

\(=90\)

c)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\)

\(=\left(2a^2-2a^2\right)+\left(2b^2-2b^2\right)+2c^2+4ab-4ab+2\left(ac+bc-ac-bc\right)\)

\(=2c^2\)

9 tháng 9 2020

a) 5( x + 4 )2 + 4( x - 5 )2 - 9( 4 + x )( x - 4 )

= 5( x2 + 8x + 16 ) + 4( x2 - 10x + 25 ) - 9( x2 - 16 )

= 5x2 + 40x + 80 + 4x2 - 40x + 100 - 9x2 + 144

= ( 5x2 + 4x2 - 9x2 ) + ( 40x - 40x ) + ( 80 + 100 + 144 )

= 324

b) ( x + 2y )2 + ( 2x - y )2 - 5( x + y )( x - y ) - 10( y + 3 )( y - 3 )

= x2 + 4xy + 4y2 + 4x2 - 4xy + y2 - 5( x2 - y2 ) - 10( y2 - 9 )

= x2 + 4xy + 4y2 + 4x2 - 4xy + y2 - 5x2 + 5y2 - 10y2 + 90

= ( x2 + 4x2 - 5x2 ) + ( 4xy - 4xy ) + ( 4x2 + y2 + 5y2 - 10y2 ) + 90

= 90

c) ( a + b + c )2 + ( a + b - c )2 - 2( a + b )2

= [ ( a + b ) + c ]2 + [ ( a + b ) - c ]2 - 2( a + b )2

=  ( a + b )2 + 2( a + b )c + c2 + ( a + b )2 - 2( a + b )c + c2 - 2( a + b )2

= [ ( a + b )2 + ( a + b )2 - 2( a + b )2 ] + [ 2( a + b )c - 2( a + b )c ] + ( c2 + c2 )

= 2c2

7 tháng 3 2020

a.

=(5^7+5^9)(6^8+6^10)(16-4^2)

=(5^7+5^9)(6^8+6^10)(16-16)

=(5^7+5^9)(6^8+6^10).0

=0

a, =5^16 . 6^18 . 0 

=0

chúc bn hc tốt

a: \(\sqrt[4]{\left(-\dfrac{4}{5}\right)^4}=\left|-\dfrac{4}{5}\right|=\dfrac{4}{5}\)

b: \(\dfrac{\sqrt{4}}{\sqrt{5}}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

c: \(\left(\sqrt[3]{9}\right)^2=\left(9^{\dfrac{1}{3}}\right)^2=9^{\dfrac{2}{3}}\)

d: \(\sqrt[5]{\sqrt{a}}=\sqrt[5]{a^{\dfrac{1}{2}}}=a^{\dfrac{1}{2}\cdot\dfrac{1}{5}}=a^{\dfrac{1}{10}}\)

e: \(\sqrt[3]{2^6}=\sqrt[3]{\left(2^2\right)^3}=2^2=4\)

9 tháng 7 2023

\(A=1-2+3-4+5-6+7-8+...+99-100\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(A=\left(-1\right).50\)

\(A=-50\)

\(B=1+3-5-7+9+11-...-397-399\)

\(B=1-2+2-2+2-...+2-2-399\)

\(B=1-399\)

\(B=-398\)

\(C=1-2-3+4+5-6-7+...+97-98-99+100\)

\(C=-1+1-1+1-...-1+1\)

\(C=0\)

\(D=2^{2024}-2^{2023}-...-1\)

\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)

\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)

\(D=2^{2024}-\left(2^{2024}-1\right)\)

\(D=2^{2024}-2^{2024}+1\)

\(D=1\)

9 tháng 7 2023

A = 1 - 2 + 3  - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100

A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)

Xét dãy số 1; 3; 5;...;99

Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2

Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)

Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1

A =  - 1\(\times\)50 = -50

b, 

B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399

B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)

B = -8 + (-8) +...+ (-8)

Xét dãy số 1; 9; ...;393

Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8

Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)

Tổng B có 50 nhóm mỗi nhóm có giá trị là -8

B = -8 \(\times\) 50 = - 400

c, 

C = 1 - 2 - 3 + 4 + 5 -  6 +...+ 97 - 98 - 99 +100

C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)

C = 0 + 0 + 0 +...+0

C = 0

d,   D =           22024 - 22023- ... +2 - 1

    2D = 22005- 22004 + 22003+...- 2

2D + D = 22005 - 1

 3D      = 22005 - 1

   D      = (22005 - 1): 3

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)