K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

Câu hỏi của Nhàn Nguyễn - Toán lớp 8 - Học toán với OnlineMath

15 tháng 10 2016

Đặt x = a+b , y = b+c , z = c+a

Thì biểu thức trên trở thành \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy-3xyz\)

\(=\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Từ đó thay a,b,c vào rồi rút gọn :)

Y
13 tháng 6 2019

Đặt \(a+b=x,b+c=y,c+a=z\) ( đặt cho dễ nhìn ý mà :)) ta có :

\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=2\left(a+b+c\right)\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-\left(a+b\right)\left(b+c\right)-\left(b+c\right)\left(c+a\right)-\left(c+a\right)\left(a+b\right)\right]\)

\(=2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

NV
13 tháng 6 2019

Đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\)

\(x^3+y^3+z^3-3xyz=x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-xz\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)

\(=\frac{1}{2}\left(2a+2b+2c\right)\left[\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right]\)

\(=\left(a+b+c\right)\left[\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right]\)

25 tháng 6 2017

trình bày dài quá ; giờ chỉ cho cách làm thôi nha hehe

dùng hằng đẳng thức : mũ 3

biền đổi

\(\left(a+b+c\right)^3=\left(a+\left(b+c\right)\right)^3\)

\(\left(b+c-a\right)^3=\left(b+\left(c-a\right)\right)^3\)

\(\left(a+c-b\right)^3=\left(a+\left(c-b\right)\right)^3\)

\(\left(a+b-c\right)^3=\left(a+\left(b-c\right)\right)^3\)

xong áp dụng hằng đẳng thức mũ 3

5 tháng 8 2018

k có câu b ạ lolang

20 tháng 7 2017

a,\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b\right)\)

Tương tự :

\(\left(b+c-a\right)^3=b^3+c^3-a^3+3\left(a^2b-b^2a+ca^2-ac^2+b^2c+c^2b\right)\)

\(\left(b+a-c\right)^3=b^3-c^3+a^3+3\left(a^2b+b^2a-ca^2+ac^2-b^2c+c^2b\right)\)

\(\left(a+c-b\right)^3=c^3+a^3-b^3+3\left(-a^2b+b^2a+ca^2+ac^2+b^2c-c^2b\right)\)

Biểu thức sau khi rút gọn ta được 

24abc

20 tháng 7 2017

b,\(\left(a+b\right)^3=a^3+b^3+3\left(a^2b+b^2a\right)\)

\(\left(c+b\right)^3=c^3+b^3+3\left(c^2b+b^2c\right)\)

\(\left(a+c\right)^3=a^3+c^3+3\left(a^2c+b^2c\right)\)

=>\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3=\)\(2\left(a^2+b^2+c^2\right)+3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b\right)\)

Lại có 

\(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b+2abc\right)\right)\)

Biểu thức khi đó trở thành 

\(2\left(a^2+b^2+c^2\right)-6abc=2\left(a^2+b^2+c^2-3abc\right)\)

Tặng vk iu 

11 tháng 8 2016

Đặt x = a+b , y = b+c , z = c+a

Khi đó : \(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-xz\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\frac{x+y+z}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Thay x,y,z bởi a,b,c vào và rút gọn :)

10 tháng 8 2016
2a^3 + 2b^3 + 2 c^3 -6abc
10 tháng 8 2016

Đặt\(a+b=x\)

\(b+c=y\)

\(c+a=z\)

\(\Rightarrow x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)

\(=\left(a+b+c\right)\left[\left(a-c\right)^2+\left(a-b\right)^2+\left(b-c\right)^2\right]\)