C/m : nếu a/b = c/d thì :
\(\frac{4a+3b}{4a-3b}=\frac{8c+6d}{8c-6d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Khi đó : \(\frac{bk+dk}{bk}=\frac{b+d}{b}\)
\(\Rightarrow\frac{k\left(b+d\right)}{bk}=\frac{b+d}{b}\)
\(\Rightarrow\frac{b+d}{b}=\frac{b+d}{b}\left(đpcm\right)\)
Khi đó : \(\frac{4bk+3b}{4dk+3d}=\frac{4bk-3b}{4dk-3d}\)
\(\Rightarrow\frac{b\left(4k+3\right)}{d\left(4k+3\right)}=\frac{b\left(4k-3\right)}{d\left(4k-3\right)}\)
\(\Rightarrow\frac{b}{d}=\frac{b}{d}\left(đpcm\right)\)
a) \(\frac{a}{b}\)=\(\frac{c}{d}\), áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{a+c}{b+d}\)
\(\frac{a+c}{b+d}\)=\(\frac{a}{b}\)
\(\Rightarrow\)\(\frac{a+c}{a}\)=\(\frac{b+d}{d}\)
b) \(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)\(\Rightarrow\)\(\frac{4a}{4c}\)=\(\frac{3b}{3d}\)(1)
Từ (1), áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{4a}{4c}\)=\(\frac{3b}{3d}\)=\(\frac{4a+3b}{4c+3d}\)=\(\frac{4a-3b}{4c-3d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{4a}{4c}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\)
Vậy \(\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(ĐPCM\right)\)
a, Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(1)
\(\Leftrightarrow\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)(2)
Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)
b, Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)\(\Leftrightarrow\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)
\(\Leftrightarrow\frac{4a+3b}{4c+3d}=\frac{4a-3b}{4c-3d}\)
\(\Leftrightarrow\left(4a+3b\right)\left(4c-3d\right)=\left(4a-3b\right)\left(4c+3d\right)\)
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\) => a = bk; c = dk
Khi đó, ta có:
\(\frac{4a+3b}{4a-3b}=\frac{4bk+3b}{4bk-3b}=\frac{b\left(4k+3\right)}{b\left(4k-3\right)}=\frac{4k+3}{4k-3}\) (1)
\(\frac{8c+6d}{8c-6d}=\frac{2\left(4c+3d\right)}{2\left(4c-3d\right)}=\frac{4c+3d}{4c-3d}=\frac{4dk+3d}{4dk-3d}=\frac{d\left(4k+3\right)}{d\left(4k-3\right)}=\frac{4k+3}{4k-3}\) (2)
Từ (1) và (2) => \(\frac{4a+3b}{4a-3b}=\frac{8c+6d}{8c-6d}\) <=> a/b = c/d