Tính:
A= 5+10+15+20+........+2020
B=1-2+3-4+5-6+7-8+.....+2019-2020+2021.
C= 1×3+2×4+3×5+............+200×202
Làm nhanh hộ mih cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= 2021.2021-2020.(2021+1)
= 2021.(2020+1)-2020.(2021+1)
= (2021.2020)+2021-(2020.2021)-2020
= 1
b) B= (1+2-3-4)+(5+6-7-8)+(9+10-11-12)...........+(2017+2018-2019-2020)+2021
B= -4+(-4)+....................(-4)+2021
B= -4x505+2021
B= -2020 + 2021
B = 1
(1+3+5+7+...+2019+2021)
A=1−3+5−7+......−2019+2021−2023
A=(1−3)+(5−7)+....+(2021−2023)A=(1−3)+(5−7)+....+(2021−2023)
A=−2+(−2)+....+(−2)(506)A=−2+(−2)+....+(−2)(506cặp)
a=−2.506A=−2.506
A=−1012A=−1012
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
S=1+(2-3)+(-4+5)+(6-7)+(-8+9)+...+(-2020+2021)
S=1-1+1-1+1+...+1
S=1+0+0+...+0
S=1
\(S=1+2-3-4+...+2017+2018-2019-2020+2021\\ S=\left(1+2-3-4\right)+...+\left(2017+2018-2019-2020\right)+2021\\ S=\left(-4\right)+\left(-4\right)+\left(-4\right)+...+-4+2021\\ S=505.\left(-4\right)+2021\\ S=-2020+2021\\ S=1\)
Ta có: \(S=1+2-3-4+5+6-...+2018-2019-2020+2021\)
\(=\left(-4\right)\cdot505+2021\)
=2021-2020
=1
\(S=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2017+2018-2019-2020\right)+2021\\ S=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+2021\)
Ta có từ 1 đến 2020 có 2020 số nên khi nhóm 4 số 1 cặp thì có \(2020:5=404\left(cặp\right)\)
Vậy \(S=404\left(-4\right)+2021=-1616+2021=405\)
a) Số số hạng=(2020-5):5+1=404
=> A=(2020+5)×404 : 2= 409050
b) Từ 1 đến 2020 có 2020 số hạng=> có 1010 cặp,mỗi cặp = -1
=>B= 1010×(-1) +2021=1011
a) =[(2020-5):5+1].[(2020+5):5]
=403.405
=163215