Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số số hạng=(2020-5):5+1=404
=> A=(2020+5)×404 : 2= 409050
b) Từ 1 đến 2020 có 2020 số hạng=> có 1010 cặp,mỗi cặp = -1
=>B= 1010×(-1) +2021=1011
Lời giải:
a.
$5+3(-7)+4:(-2)=5+(-21)+(-2)=5-(21+2)=5-23=-(23-5)=-18$
b.
$1-2-3+4+5-6-7+8+....+2017-2018-2019+2020+2021$
$=(1-2-3+4)+(5-6-7+8)+....+(2017-2018-2019+2020)+2021$
$=0+0+....+0+2021=2021$
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
=(1+2-3-4)+(5+6-7-8)+...+(2017+2018-2019-2020)+2021
=(-4)+(-4)+...+(-4)+2021
=-4*505+2021
=1
\(B=1+2-3-4+5+6-7-8+9+10-...+2018-2019-2020+2021\)
\(B=\left(1+2-3-4\right)+...+\left(2017+2018-2019-2020\right)+2021\) \(B=\left(-4\right)+...+\left(-4\right)+2021+2020:4=505\)
\(B=\left(-4\right).505+2021\) \(B=\left(-2020\right)+2021\)
\(B=1\)
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2018 – 2019 - 2020 + 2021 + 2022
S = (1 + 2 - 3 - 4) + ... + (2017 + 2018 – 2019 - 2020) + 2021 + 2022
S = (-4) + ... + (-4) + 2021 + 2022
2020 : 4 = 505
S = (-4) . 505 + 2021 + 2022
S = (-2020) + 2021 + 2022
S = 2023
\(1-2+3-4+5-6+...+2019-2020+2021\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(2019-2020\right)+2021\)
\(=-1-1-1-..-1+2021\)
\(=-1\cdot1010+2021\)
\(=-1010+2021\)
\(=-1011\)
1−2+3−4+5−6+...+2019−2020+2021
=(1−2)+(3−4)+(5−6)+...+(2019−2020)+2021=(1−2)+(3−4)+(5−6)+...+(2019−2020)+2021
=−1−1−1−..−1+2021=−1−1−1−..−1+2021
=−1⋅1010+2021=−1⋅1010+2021
=−1010+2021=−1010+2021
=−1011=−1011
B=-1.1009+2019+2020+2021