K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

sai từ dấu = thứ 2 , bạn nhân sai

sửa lại (mk làm theo cách nhóm ko phải nhân ra )

(8xy+3)2 - (6x+4y)2

= (8xy + 3 - 6x -4y)(8xy+3+6x+4y)

=[4y(2x-1)-3(2x-1)][4y(2x+1)+3(2x+1)]

=(2x-1)(4y-3)(2x+1)(4y+3)

18 tháng 7 2017

A= (4x2+8xy+4y2)+ (x2-2x+1)-1+(y2+2y+1)-1+2019= 4(x+y)2 + (x-1)2+(y+1)2+2017 \(\ge\)2017

Dấu "=" xảy ra khi      \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)

Vậy MinA= 2017 khi x=1; y=-1

 

A=5+ (-x2+2x) +(-4y2-4y)= -(x2-2x+1)+1-(4y2+4y+1)+1+5=-(x-1)2-(2y+1)2 +7 \(\le\)7

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)

Vậy Max A bằng 7 khi x=1; y=-1/2

 

 

2 tháng 8 2017

Ta có : x2 + 8xy + 4y2

= x2 + 2.x.2y + (2y)2

= (x + 2y)2

Mà ;  (x + 2y)\(\ge0\forall x\)

Nên : GTNN của biểu thức là 0 

14 tháng 8 2017

Ta có \(x^2+8xy+4y^2\)

=\(x^2+2x2y+\left(2y\right)^2\)

=\(\left(x+2y\right)^2\)

Mà \(\left(x+2y\right)^2\ge0\forall x\)

Nên GTNN của biểu thức là 0

a: A=x^2-2xy+y^2+y^2-4y+4+1

=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2

b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2

=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2

Dấu = xảy ra khi x=1 và y=-1

14 tháng 8 2023

có lời giải chi tiết ko ạ

`a, -xy(x^2+xy-y^2)`

`= -x^3y - x^2y^2 + xy^3`.

`b, 5x^2y(2y^2-xy)`

`= 10x^2y^3 - 5x^3y^2`.

`c, (-2x^3 - 1/4y - 4y^2).8xy^2`.

`= -16x^4y^2 - 2xy^3 - 32xy^4`.

`d, (2x^3 - 3xy + 12x)(-1/6xy)`

`= -2/3x^4y + 1/2x^2y^2 - 2x^2y`.