![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: A=x^2-2xy+y^2+y^2-4y+4+1
=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2
b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2
=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2
Dấu = xảy ra khi x=1 và y=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+y^2+\frac{8xy}{x+y}=16\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4x^2+4y^2+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)^2-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(x^2+y^2+4x+4y\right)=0\)
\(\Leftrightarrow x+y-4=0\)(vì \(x^2+y^2+4x+4y>0\))
\(\Leftrightarrow y=4-x\).
\(Q=x^2-2x+4y+100=x^2-2x+4\left(4-x\right)+100\)
\(=x^2-6x+116=\left(x-3\right)^2+107\ge107\)
Dấu \(=\)khi \(x=3\Rightarrow y=1\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Làm lại nha. Cái trên làm sai rồi nha
25 A = 25(x² + y² - 4x - 4y + 10)
= (5x - 13)² + (5y - 14)² + 10(3x + 4y) - 115
≥ 10.19 - 115 = 75
<=> A ≥ 3
A = x² + y² - 4x - 4y + 10
≥ x² + [(19 - 3x)/4]² - 4x - 4.(19 - 3x)/4 + 10
= (1/16).(25x² - 130x + 217)
= (1/16).(5x - 13)² + 3 ≥ 3
Dấu = xảy ra tại x = 13/5; y = 14/5
![](https://rs.olm.vn/images/avt/0.png?1311)
A= (4x2+8xy+4y2)+ (x2-2x+1)-1+(y2+2y+1)-1+2019= 4(x+y)2 + (x-1)2+(y+1)2+2017 \(\ge\)2017
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)
Vậy MinA= 2017 khi x=1; y=-1
A=5+ (-x2+2x) +(-4y2-4y)= -(x2-2x+1)+1-(4y2+4y+1)+1+5=-(x-1)2-(2y+1)2 +7 \(\le\)7
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)
Vậy Max A bằng 7 khi x=1; y=-1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x+5=t\)\(\Rightarrow A=\left(t-1\right)\left(t+1\right)=t^2-1\ge-1\)
Suy ra Min A = -1 \(\Leftrightarrow t=0\Leftrightarrow x^2+5x+5=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(5x^2+8xy+5y^2+4x-4y+8=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)+\left(y^2-4y+4\right)+4x^2+4y^2+8xy=0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-2\right)^2+4\left(x+y\right)^2=0\)
\(\Leftrightarrow x=-2;y=2\)
Thay vào P ta có:
\(P=\left(2-2\right)^8+\left(1-2\right)^{11}+\left(2-1\right)^{2018}\)
\(=0-1+1=0\)