K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

hello quân Phú đây

NV
10 tháng 7 2021

Hai số hạng liên tiếp của dãy có dạng:

\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)

Tổng của 2 số hạng liên tiếp:

\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)

7 tháng 5 2016

 bài 1 số thứ 25 của dãy là: (25-1) x 3 + 2 = 74 

7 tháng 5 2016

a,Bài 1:

Ta có 

ST1: 2 = 3.0+2

ST2: 5 = 3.1+2

St3: 8 = 3.2+2

....

=> STn = 3.(n-1) +2

=> ST25 = 3. (25-1) +  2 = 3.24 + 2 = 74

b, Theo phần a có các số trong dãy là các số chia 3 dư 2

Mà: 72 chia hết cho 3 => 72 ko thuộc dãy

  56 chia 3 dư 2 

=> 56 là số thứ: (56 - 2) : 3 +1 = 19 của dãy

k mih đi chứ

23 tháng 7 2016

Nhận xét các số hạng trong dãy có dạng

\(\frac{n\left(n+1\right)}{2}\)

=>Tổng 2 số hạng liên tiếp của dãy là

\(\frac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\frac{\left(n+1\right)2\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\) là số chính phương

=>đpcm

24 tháng 6 2017

Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\dfrac{\left(n-1\right).n}{2}\) và \(\dfrac{n.\left(n+1\right)}{2}\)

=> \(\dfrac{\left(n-1\right).n}{2}\)+ \(\dfrac{n.\left(n+1\right)}{2}\)=\(\dfrac{n^2-n+n^2+n}{2}=\dfrac{2n^2}{2}=n^2\)

Vậy tổng của hai số hạng liên tiếp bao giờ cũng là số chính phương