Cho tam giác ABC nhọn. Đường cao AI, BK, CS.
a, Cminh \(S_{BCKS}=S_{ABC}.sin^2A\)
b, Cminh IH. IA \(\le\frac{BC^2}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tử kẻ hình nhé .
a)\(\Delta ABD~\Delta ACE\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\)
\(\Rightarrow\Delta ADE~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=cos^2\widehat{BAC}\)
\(\Rightarrow S_{ADE}=S_{ABC}.cos^2\widehat{BAC}\)
b)Ta có : \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}-S_{ABC}.cos^2\widehat{BAC}=S_{ABC}\left(1-cos^2\widehat{BAC}\right)=S_{ABC}.sin^2\widehat{BAC}\)
a, \(\bigtriangleup{ABD} \sim \bigtriangleup{ACE}\) (g.g)
\(\Rightarrow\) \(\dfrac{AB}{AC} = \dfrac{AD}{AE}\) \(\Rightarrow\) \(\dfrac{AB}{AD} = \dfrac{AC}{AE}\)
\(\Rightarrow\) \(S_{ABC} \sim S_{ADE}\) (c.g.c)
\(\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}} = k^2 = ({\dfrac{AD}{AB}})^2\) = \(cos^2A\)
\(\Rightarrow\) \(S_{ADE} = S_{ABC} . cos^2A\) (đpcm)
b, \(S_{BCDE} = S_{ABC} - S_{ADE}\)
\(= S_{ABC} - S_{ABC} . cos^2A \)
= \(S_{ABC} (1-cos^2A)\)
= \(S_{BCDE} = S_{ABC} . sin^2A \) (đpcm)
a)
Ta có:
Tam giác AKC vuông tại K \(\Rightarrow sinA=\frac{KC}{AC}\)
\(VT=S_{ABC}=\frac{1}{2}.AB.CK=\frac{1}{2}.AB.\left(AC.\frac{KC}{AC}\right)=\frac{1}{2}.AB.AC.sinA=VP\)(đpcm)
b)
\(\left(1-cos^2A-cos^2B-cos^2C\right).S_{ABC}\)
\(=\left(1-\frac{KC^2}{AC^2}-\frac{BI^2}{AB^2}-\frac{AH^2}{BC^2}\right).S_{ABC}\)
\(=\left[\left(1-\frac{AH^2}{BC^2}\right)-\left(\frac{KC^2}{AC^2}+\frac{BI^2}{AB^2}\right)\right].S_{ABC}\)
\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{AB^2.KC^2-AC^2.BI^2}{AB^2.AC^2}\right).S_{ABC}\)
\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{S^2_{ABC}-S^2_{ABC}}{AB^2.AC^2}\right).S_{ABC}\)
\(=\left(1-\frac{AH^2}{BC^2}\right).S_{ABC}=S_{ABC}-\frac{AH^2}{BC^2}.S_{ABC}\)
a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)
SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))
b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC
=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC
a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)
Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)
Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)
b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\); \(S_{CEF}=S_{ABC}.cos^2C\)
Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)
Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)
Chúc em học tốt :)))