Tìm x , y nếu
\(a\orbr{\begin{cases}x+y=60\\\frac{x}{y}=\frac{3}{2}\end{cases}}\) b \(\orbr{\orbr{\begin{cases}\frac{x^2}{9}=\frac{y^2}{16}\\x^2+y^2=100\end{cases}}}\)
Giúp mình đi , làm ơn đấy , mình cần gấp , mk sẽ tick cho , cảm ơn các bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:\hept{\begin{cases}x>0\\y\ne0\end{cases}}\)
HPT\(\Leftrightarrow\hept{\begin{cases}2x^2+2y^2-5xy=0\\x^2-y^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}2\frac{x^2}{y^2}-5\frac{x}{y}+2=0\left(1\right)\\x^2-y^2=3\left(2\right)\end{cases}}}\)
(1)
Dat \(\frac{x}{y}=t\)
\(\Rightarrow2t^2-5t+2=0\)
Ta co:
\(\Delta_t=9>0\)
\(\Rightarrow\orbr{\begin{cases}t_{ }_1=4\\t_2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4y\\x=y\end{cases}}\)
Thay x=4y vao PT(2)
\(x=\frac{4}{\sqrt{5}}\Rightarrow y=\frac{1}{\sqrt{5}}\)
Thay x=y vao PT(2)
\(x^2-x^2=3\Leftrightarrow0=3\left(l\right)\)
\(x\left(x-y\right)-y\left(x-y\right)=\frac{3}{10}-\left(-\frac{3}{50}\right)\)
\(\Leftrightarrow\left(x-y\right)^2=\frac{9}{25}\)
\(\Rightarrow\orbr{\begin{cases}x-y=\frac{3}{5}\\x-y=-\frac{3}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}+y\\x=y-\frac{3}{5}\end{cases}}}\)
Với \(x=\frac{3}{5}+y\Rightarrow x\left(x-y\right)=\left(\frac{3}{5}+y\right).\frac{3}{5}=\frac{3}{10}\)
\(\Rightarrow y=-\frac{1}{10}\)
\(\Rightarrow x=\frac{1}{2}\)
Với \(x=y-\frac{3}{5}\Rightarrow x\left(x-y\right)=x\left(y-\frac{3}{5}-y\right)=-\frac{3}{50}\)
\(\Leftrightarrow x.\left(-\frac{3}{5}\right)=-\frac{3}{50}\Rightarrow x=\frac{1}{10}\)
\(\Rightarrow y=\frac{7}{10}\)
Vậy \(x=\frac{1}{2};y=-\frac{1}{10}\)hoặc \(x=\frac{1}{10};y=\frac{7}{10}\)
theo bài ta có x+y=60 (1)
x/y =3/2 suy ra \(\frac{x}{3}\)=\(\frac{y}{2}\)=\(\frac{x+y}{3+2}\)
từ 1 \(\Rightarrow\) \(\frac{x+y}{3+2}\)=\(\frac{60}{5}\)=12
\(\Rightarrow\frac{x}{3}\) =12\(\Rightarrow x=36\)
\(\Rightarrow\frac{y}{2}\) =12\(\Rightarrow y=24\)