K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Bài này dài lắm bạn nhưng có câu hỏi tương tự như của bạn nè: Câu hỏi của Dương Thị Hương Sơn.

Chúc bạn học tốt!

cho tam giác ABC. gọi M,N,E lần lượt là trung điểm BC,AC,AB.Trên tia đối của tia NE lấy điểm P sao cho N là trung điểm EP 1, CM: AE=CP=EB 2, tam giác BEC= tam giác PCE 3,CM: EN // BC,EN= BC 4, Gọi G là trọng tâm của tam giác ABC. Trên tia SG lấy điểm D sao cho G là trung điểm AD. So sánh cạnh của tam giac BGD với các đường trung tuyến của tam giác ABC 5, So sánh các đương trung tuyến của tam giác BGD với các cạnh...
Đọc tiếp

cho tam giác ABC. gọi M,N,E lần lượt là trung điểm BC,AC,AB.Trên tia đối của tia NE lấy điểm P sao cho N là trung điểm EP

1, CM: AE=CP=EB

2, tam giác BEC= tam giác PCE

3,CM: EN // BC,EN= BC

4, Gọi G là trọng tâm của tam giác ABC. Trên tia SG lấy điểm D sao cho G là trung điểm AD. So sánh cạnh của tam giac BGD với các đường trung tuyến của tam giác ABC

5, So sánh các đương trung tuyến của tam giác BGD với các cạnh của tam giác abc

6, Từ E ke đường thẳng song song với BC cắt AM tại K.CM K là trung điểm của AM. CM G là trọng tâm của tam giác MNE

7, Đường thẳng ck cắt ab tại I. J là trung điểm của AJ và AI =\(\(\(\frac{1}{3}\)\)\)AB

8, CMR trong 3 dường trung tuyến của tam giác ABC tổng 2 đường còn lại

9, Trên tia AB lấy điểm B' sao cho B là trung điểm EB' .Trên tia HC lấy điểm C' sao cho C là trung điểm của AC. CM B',M,A" thẳng hàng

10, Cho AM =12cm, BN= 2cm, CF =15 cm. Tính BA

11, G là trọng tâm của tam giác ABC, coa cạnh BC cố định. CMR đường thẳng AG luôn đi qua 1 điểm cố định khi A thay đổi

12, Cho điểm O thay đổi trong tam giác ABC. Lấy O sao cho M' là trung điểm của OO'. Gọi M là trung điểm AO'. CM OM' luôn luôn đi qua 1 điểm cố định

0
17 tháng 7 2020

A B C D E G M

A)VÌ AD LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

\(\Rightarrow AG=2GD\)

MÀ \(AG=GM\)( G LÀ TRUNG ĐIỂM CỦA AM )

\(\Rightarrow GM=2GD\)

NÊN D LÀ TRUNG ĐIỂM CỦA  GM

\(\Rightarrow GD=DM\left(ĐPCM\right)\)

XÉT \(\Delta BDM\)\(\Delta CDG\)

\(BD=CD\left(GT\right)\)

\(\widehat{BDM}=\widehat{CDG}\)( ĐỐI ĐỈNH)

\(GD=DM\left(CMT\right)\)

=>\(\Delta BDM\)=\(\Delta CDG\)( C-G-C)

B)

VÌ CE LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

\(\Rightarrow CG=\frac{2}{3}CE\)

THAY\(CG=\frac{2}{3}.6=4\left(CM\right)\)

MÀ \(\Delta BDM\)=\(\Delta CDG\)( CMT)

=>\(BM=CG=4\left(CM\right)\)

C) 

TA CÓ

 \(AB< DB+DA\)

\(AC< DC+DA\)

CỘnG VẾ THEO VẾ

\(\Rightarrow AB+AC< 2AD+DB+DC\)

GIẢI TIẾP LÀ RA

cái chỗ giải tiếp là ra bạn giải tiếp cho mk ik

mk ko làm đc