K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

a, \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{\left(a-c\right)^4}{\left(b-d\right)^4}\) (1)

\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{5a^4}{5b^4}=\frac{7c^4}{7d^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(2)

Từ (1) và (2) => đpcm

b, \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (3)

\(\frac{a}{b}=\frac{c}{d}=\frac{3c}{3d}=\frac{a-3c}{b-3d}\) (4)

Từ (3) và (4) => đpcm

c, làm giống câu a

8 tháng 10 2017

a) ta có \(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}\left(1\right)\)

            \(\frac{a}{b}=\frac{c}{d}=\frac{a-3c}{b-3d}\left(2\right)\)

(1) và (2) => \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)

24 tháng 12 2021

giúp mình với, mai mình kiểm tra cuối kỉ rồi

25 tháng 11 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)

\(\Rightarrow\frac{2a}{2c}=\frac{7b}{7d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2a}{2c}=\frac{7b}{7d}=\frac{2a+7b}{2c+7d}\) (1).

\(\frac{2a}{2c}=\frac{7b}{7d}=\frac{2a-7b}{2c-7d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{2a+7b}{2c+7d}=\frac{2a-7b}{2c-7d}.\)

\(\Rightarrow\frac{2a+7b}{2a-7b}=\frac{2c+7d}{2c-7d}\left(đpcm\right).\)

Chúc bạn học tốt!

22 tháng 9 2018

Từ \(\frac{a}{b}=\frac{c}{d}\rightarrow\frac{a}{c}=\frac{b}{d}\rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{5a^2}{5c^2}=\frac{7b^2}{7d^2}\)

Áp dụng t/c DTSBN :
 \(\frac{a^2}{c^2}=\frac{5a^2}{5c^2}=\frac{7b^2}{7d^2}=\frac{5a^2-7b^2}{5c^2-7d^2}\)

Vậy \(\frac{a^2}{c^2}=\frac{5a^2-7b^2}{5c^2-7d^2}\)

23 tháng 9 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{c^2}\) (theo tính chất tỉ lệ thức)

Áp dụng tính chất cơ bản của phân số: \(\frac{a^2}{c^2}=\frac{5a^2}{5c^2}=\frac{b^2}{d^2}=\frac{7b^2}{7d^2}\) (*)

Từ (*) theo t/c tỉ dãy số bằng nhau. Ta có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{5a^2-7b^2}{5c^2-7a^2}^{\left(đpcm\right)}\)

*\(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}=\frac{a}{b}.\left(\frac{a}{b}\right)=\frac{ac}{bd}\)(đpcm)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\left(\frac{a+c}{b+d}\right)^2\)(1)

Ta lại có \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(2)

Từ (1),(2) => đpcm

7 tháng 5 2020

\(\Leftrightarrow\Sigma\sqrt{\frac{3a^3}{\left[5a^2+\left(b+c\right)^2\right]\left(a+b+c\right)}}\le1\)

Theo Am-GM: \(VT=\Sigma\sqrt{\frac{3a^2}{5a^2+\left(b+c\right)^2}.\frac{a}{a+b+c}}\le\Sigma\frac{3a^2}{2\left(5a^2+\left(b+c\right)^2\right)}+\frac{1}{2}\)

Như vậy nó là đủ để chứng minh rằng: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\)

Giả sử \(c=min\left\{a,b,c\right\}\) nó tương đương:

$$2\, \left( a-b \right) ^{2} \left( 3\,c+a+b \right) \left( -c+a+b
 \right) \left( {a}^{2}+2\,ab+{b}^{2}+5\,{c}^{2} \right) +2\,c
 \left( a-c \right) \left( b-c \right) \left( 3\,{a}^{3}+9\,{a}^{2}b
+17\,c{a}^{2}+9\,a{b}^{2}-20\,abc+3\,{c}^{2}a+3\,{b}^{3}+17\,c{b}^{2}+
3\,{c}^{2}b+{c}^{3} \right) \geqq 0$$

(Gõ Latex, không hiện thì vô thống kê hỏi đáp xem)

Đây là điều hiển nhiên/

PS: Bài này quan trọng là ý tưởng phá căn thôi chứ không có gì khó. Lúc đầu UCT bất đẳng thức cuối cho đẹp nhưng phải xét các TH mệt lắm, chưa rành nên không làm cách đó:D

7 tháng 5 2020

Chứng minh: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\), cách 2:

Đổi biến sang pqr: (Vô thống kê hỏi đáp xem nếu olm không hiện Latex)

Nếu \(p^2\le4q\) ta cần:

$$2/9\,p \left( 19\,{p}^{2}-36\,q \right) \left( {p}^{3}-4\,qp+9\,r
 \right) -4/9\, \left( {p}^{2}-3\,q \right) \left( {p}^{2}-4\,q
 \right) \left( 5\,{p}^{2}-3\,q \right) \geqq 0$$

(Hiển nhiên)

Nếu \(p^2\ge4q\) thì cần chứng minh:

$$2\,p \left( 19\,{p}^{2}-36\,q \right) r+2\, \left( {p}^{2}-4\,q
 \right) \left( {p}^{4}-2\,{q}^{2} \right) \geqq 0$$

(Hiển nhiên)

Từ 2 TH trên ta thu được điều phải chứng minh.

13 tháng 11 2018

Với điều kiện như đề bài

Ta có: \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right)\left(a+c\right)}=\frac{\left(b-a\right)\left(b+a\right)+\left(a-c\right)\left(a+c\right)}{\left(a+b\right)\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\)

Tướng tự: 

\(\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\)

\(\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\)

Em nhớ làm tiếp nhé!

13 tháng 11 2018

làm tiếp kiểu gì ạ 

28 tháng 9 2018

Ta co:

\(\frac{a^2}{5a^2+\left(b+c\right)^2}=\frac{a^2}{\left(a^2+b^2+c^2\right)+\left(2a^2+bc\right)+\left(2a^2+bc\right)}\)

\(\le\frac{1}{9}\left(\frac{a^2}{a^2+b^2+c^2}+\frac{2a^2}{2a^2+bc}\right)=\frac{1}{9}\left(\frac{a^2}{a^2+b^2+c^2}+1-\frac{bc}{2a^2+bc}\right)\)

Từ đây ta co:

\(VT\le\frac{1}{9}\left(\frac{a^2+b^2+c^2}{a^2+b^2+c^2}+3-\left(\frac{ab}{2c^2+ab}+\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}\right)\right)\)

\(VT\le\frac{4}{9}-\frac{1}{9}\left(\frac{ab}{2c^2+ab}+\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}\right)\le\frac{4}{9}-\frac{1}{9}=\frac{1}{3}\)

30 tháng 8 2020

Chứng minh với 3 số thực dương x,y,z ta có : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)(*)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)

Chứng minh được bất đẳng thức \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\)(**)

Đẳng thức xảy ra khi và chỉ khi \(\frac{x}{m}=\frac{y}{n}=\frac{z}{p}\)

Đặt \(P=\frac{a^2}{5a^2+\left(b+c\right)^2}+\frac{b^2}{5b^2+\left(a+c\right)^2}+\frac{c^2}{5c^2+\left(b+a\right)^2}\)

Áp dụng bất đẳng thức (*) ta có : 

\(\left[\left(a^2+b^2+c^2\right)+\left(2a^2+bc\right)+\left(2a^2+bc\right)\right].\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{2a^2+bc}+\frac{1}{2a^2+bc}\right)\ge9\)

\(\frac{9a^2}{5b^2+\left(b+c\right)^2}=\frac{9a^2}{\left(a^2+b^2+c^2\right)+\left(2a^2+bc\right)+\left(2a^2+bc\right)}\le a^2\left(\frac{1}{a^2+b^2+c^2}+\frac{2}{2a^2+bc}\right)\)

Bằng cách chứng minh tương tự ta được :

\(\frac{9b^2}{5b^2+\left(c+a\right)^2}\le b^2\left(\frac{1}{a^2+b^2+c^2}+\frac{2}{2b^2+ac}\right)\)

\(\frac{9c^2}{5c^2+\left(a+b\right)^2}\le c^2\left(\frac{1}{a^2+b^2+c^2}+\frac{2}{2c^2+ab}\right)\)

Cộng theo vế các bất đẳng thức cùng chiều , khi đó ta có :

\(\frac{9a^2}{5a^2+\left(b+c\right)^2}+\frac{9b^2}{5b^2+\left(c+a\right)^2}+\frac{9c^2}{5c^2+\left(a+b\right)^2}\le1+\left(\frac{2a^2}{2a^2+bc}+\frac{2b^2}{2b^2+ca}+\frac{2c^2}{2c^2+ab}\right)\)

Suy ra \(9P\le4-\left(\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}+\frac{ab}{2c^2+ab}\right)\)

Mặt khác \(\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}+\frac{ab}{2c^2+ab}=\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{c^2a^2}{2ab^2c+c^2a^2}+\frac{a^2b^2}{2abc^2+a^2b^2}\)

Sử dụng bất đẳng thức (**) ta được :

\(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{c^2a^2}{2ab^2c+c^2a^2}+\frac{a^2b^2}{2abc^2+a^2b^2}\ge\frac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\)

Vậy \(9P\le4-1=3< =>P\le\frac{1}{3}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

 
1 tháng 9 2019

\(a+c=2b\Rightarrow2bd=ad+cd=c\left(b+d\right)=bc+cd\)

\(\Rightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Lúc đó: \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=2\left(\frac{10.bk+dk}{10b+d}\right)^2-\left(\frac{bk}{b}\right)^2\)

\(=2k^2-k^2=k^2\)(1)

và \(\left(\frac{c}{d}\right)^2=\left(\frac{dk}{d}\right)^2=k^2\)(2)

Từ (1) và (2) suy ra \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)(đpcm)