K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

Lời giải :

\(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

\(\Leftrightarrow\sqrt{x}=\sqrt{2}+1\)

Thay vào A ta được :

\(A=\frac{3+2\sqrt{2}-2}{2+\sqrt{2}+1}=\frac{1+2\sqrt{2}}{3+\sqrt{2}}\)

Vậy...

1 tháng 5 2023

Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\) 

=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2

=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)

thay vào A=\(\dfrac{-2}{3}\)

b)

A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)

Dấu bằng xẩy ra\(\Leftrightarrow\) x=0

1 tháng 5 2023

chỗ đó cho thêm x-1 nha

đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0

AH
Akai Haruma
Giáo viên
31 tháng 10 2023

Lời giải:

a. \(B=\frac{\sqrt{x}(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{x-\sqrt{x}-x-\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{-2\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}}{1-\sqrt{x}}\)

b. $B=3\Leftrightarrow \frac{\sqrt{x}}{1-\sqrt{x}}=3$

$\Rightarrow \sqrt{x}=3(1-\sqrt{x})$

$\Leftrightarrow 4\sqrt{x}=3\Leftrightarrow x=\frac{9}{16}$ (tm) 

c.

Khi $x=3-2\sqrt{2}=(\sqrt{2}-1)^2\Rightarrow \sqrt{x}=\sqrt{2}-1$

Khi đó:

$B=\frac{\sqrt{x}}{1-\sqrt{x}}=\frac{\sqrt{2}-1}{1-(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-\sqrt{2}}$

a: Sửa đề: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\dfrac{2}{x^2-2x+1}\)

\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\cdot\dfrac{1}{2}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)

b: Để P>0 thì \(-\dfrac{\sqrt{x}}{\sqrt{x}-1}>0\)

=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)

=>\(\sqrt{x}< 1\)

=>\(0< =x< 1\)

c: Thay \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) vào P, ta được:

\(P=\dfrac{-\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-1}\)

\(=\dfrac{-\left(2-\sqrt{3}\right)}{2-\sqrt{3}-1}=\dfrac{-2+\sqrt{3}}{1-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}-1}{2}\)

13 tháng 3 2020

\(A=\frac{\left(1+\sqrt{x}\right)^2-4\sqrt{x}}{\sqrt{x}-1}\)  \(\left(x\ge0;x\ne1\right)\)

\(A=\frac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

và \(B=\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2+\sqrt{2}}{\sqrt{x}+1}\)

\(B=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

\(B=\sqrt{3}+2+\frac{1}{\sqrt{3}-\sqrt{2}}+\sqrt{2}\)

\(B=\sqrt{3}+\sqrt{2}+\frac{1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)+1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{3-2+1}{\sqrt{3}-\sqrt{2}}+2\)

\(B=\frac{2}{\sqrt{3}-\sqrt{2}}+2\)

để A = B thì \(\sqrt{x}-1\)\(\frac{2}{\sqrt{3}-\sqrt{2}}+2\)

\(\sqrt{x}=\frac{2}{\sqrt{3}-\sqrt{2}}+3\)

\(\sqrt{x}=\frac{2\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+3\)

\(\sqrt{x}=2\sqrt{3}+2\sqrt{2}+3\)

tới bước này tui bí :(( mong các bạn giỏi khác giúp bạn :D

13 tháng 12 2020

a) Với \(x\ge0;x\ne1\), ta có :

\(P=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)

\(P=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(x-1\right)^2}{2}\)

\(P=[\frac{x-2\sqrt{x}+\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}].\frac{\left(x-1\right)^2}{2}\)

\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)

Vậy : \(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b) Ta có : P > 0

\(\Leftrightarrow-\sqrt{x}\left(\sqrt{x}-1\right)>0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne0\\\sqrt{x}-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\\sqrt{x}< 1\end{cases}\Leftrightarrow}}\hept{\begin{cases}x\ne0\\x< 1\end{cases}}\)

Kết hợp với đk đề bài , ta được 0 < x < 1

Vậy với 0 < x < 1 thì P > 0

c) Với \(x=7-4\sqrt{3}=3-2.2.\sqrt{3}+4=\left(\sqrt{3}-2\right)^2\)thì :

\(P=-\sqrt{\left(\sqrt{3}-2\right)^2}\left(\sqrt{\left(\sqrt{3}-2\right)^2}-1\right)\)

\(P=-|\sqrt{3}-2|\left(|\sqrt{3}-2|-1\right)\)

\(P=\left(\sqrt{3}-2\right)\left(1-\sqrt{3}\right)\)

\(P=\sqrt{3}-3-3+2\sqrt{3}\)

\(P=3\sqrt{3}-5\)

Vậy với \(x=7-4\sqrt{3}\)thì \(P=3\sqrt{3}-5\)

d) Ta có \(P=-\sqrt{x}\left(\sqrt{x}-1\right)=\sqrt{x}-x=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)

Nhận thấy : \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu " = " xảy ra khi và chỉ khi

\(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(tm\right)\)

Vậy với \(x=\frac{1}{4}\)thì max P là \(\frac{1}{4}\)

19 tháng 9 2020

Với \(x\ge0;y\ge0\). Ta có:

\(\frac{x+y}{2}\ge\sqrt{xy}\)( Bất đẳng thức Cauchy cho 2 số không âm)

Và như vậy:

\(A=\left(\left|\sqrt{xy}+\frac{x+y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x+y}{2}\right|-\left|y\right|\right)\)

\(=\left(\sqrt{xy}+\frac{x+y}{2}-x\right)+\left(\frac{x+y}{2}-\sqrt{xy}-y\right)=0\)

20 tháng 9 2020

Nhưng tích \(xy\ge0\)

ĐK: \(x-9\ne0\Rightarrow x\ne9\)

\(\sqrt{x}\ge0\Rightarrow x\ge0\)

\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)

\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)

2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)

\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)

\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)