Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
c/\(P=\frac{\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}}{1-\frac{x+2}{x+\sqrt{x}+1}}\)\(\Leftrightarrow P=\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}:\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
\(\Leftrightarrow\frac{2\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)
Xét P-1 ta có \(\frac{2x+2\sqrt[]{x}+2-x\sqrt{x}+1}{x\sqrt{x}-1}=\frac{2x+2\sqrt{x}-x\sqrt{x}+3}{x\sqrt{x}-1}\)
với x<1 thì tử dương, mẫu âm, với x>1 thì tử âm và mẫu dương
Từ đó ta luuon có P-1\(\le0\RightarrowĐPCM\)
a/\(\Leftrightarrow x=\frac{5-\sqrt{5}}{1-\sqrt{5}}+\frac{5+\sqrt{5}}{1+\sqrt{5}}-\frac{25-5}{1-5}-1\)
\(\Leftrightarrow x=0+5-1\Leftrightarrow x=4\)
Thay vào B đc \(B=\frac{4+2}{4+2+1}=\frac{6}{7}\)
b/
b/A=\(\frac{x-2\sqrt{x}-3-3\sqrt{x}+9}{x-2\sqrt{x}-3}=1-\frac{3\left(\sqrt{x}-3\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=1-\frac{3}{1+\sqrt{x}}\)
Vậy 1+ căn x thuốc Ư(3), mà \(\sqrt{x}\ge0\Rightarrow1+\sqrt{x}\ge1\)
Vậy \(1+\sqrt{x}=\left(1,3\right)\)
\(\Rightarrow\sqrt{x}=\left(0,2\right)\) Vì x nguyên nên x=0
\(\Leftrightarrow A=\frac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}:\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(\Leftrightarrow\frac{1}{1+\sqrt{x}}:\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{1+\sqrt{x}}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{x-9-x+4+\sqrt{x}+2}\)
\(\Leftrightarrow A=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{x-5\sqrt{x}+6}{x-2\sqrt{x}-3}\)
mk làm luôn
a)\(A=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}-1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right).\)
=\(\frac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}-1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}\)
=\(\frac{\left(3x+3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right).3}\)
=\(\frac{3x+3\sqrt{x}-1}{9\sqrt{x}-3}\)
=
a/ \(A=\frac{\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}}{1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}}\)
\(A=\frac{\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)-\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{8\sqrt{x}}{9x-1}}{1-\frac{3\sqrt{x}+1-3}{3\sqrt{x}+1}}\)
\(A=\frac{\frac{3x-4\sqrt{x}+1-3\sqrt{x}-1}{\left(3\sqrt{x}\right)^2-1}-\frac{8\sqrt{x}}{9x-1}}{1-1-\frac{3}{3\sqrt{x}+1}}\)
\(A=\frac{\frac{3x-7\sqrt{x}}{9x-1}-\frac{8\sqrt{x}}{9x-1}}{-\frac{3}{3\sqrt{x}+1}}\)
\(A=\frac{3x-7\sqrt{x}-8\sqrt{x}}{9x-1}\left(\frac{-\left(3\sqrt{x}+1\right)}{3}\right)\)
\(A=\frac{3x-15\sqrt{x}}{9x-1}\left(\frac{-3\sqrt{x}-1}{3}\right)\)
\(A=\frac{3\left(x-3\sqrt{x}\right)}{9x-1}\left(\frac{-3\sqrt{x}-1}{3}\right)\)
\(A=\frac{\left(x-3\sqrt{x}\right)\left(-3\sqrt{x}-1\right)}{9x-1}\)
\(A=\frac{3x\sqrt{x}+8x+3\sqrt{x}}{9x-1}\)
\(A=\frac{3x\sqrt{x}}{9x-1}+\frac{8x}{9x-1}+\frac{3\sqrt{x}}{9x-1}\)
\(A=\frac{x\sqrt{x}}{x-\frac{1}{3}}+\frac{8x}{9x-1}+\frac{\sqrt{x}}{x-\frac{1}{3}}\)
\(A=\frac{\sqrt{x}\left(x-1\right)}{x-\frac{1}{3}}+\frac{\frac{8}{3}x}{x-\frac{1}{3}}\)
\(A=\frac{\sqrt{x}\left(x-1\right)+\frac{8}{3}x}{x-\frac{1}{3}}\)