Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
a: \(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
a: \(P=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
b: \(P=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi x=1/4
b/A=\(\frac{x-2\sqrt{x}-3-3\sqrt{x}+9}{x-2\sqrt{x}-3}=1-\frac{3\left(\sqrt{x}-3\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=1-\frac{3}{1+\sqrt{x}}\)
Vậy 1+ căn x thuốc Ư(3), mà \(\sqrt{x}\ge0\Rightarrow1+\sqrt{x}\ge1\)
Vậy \(1+\sqrt{x}=\left(1,3\right)\)
\(\Rightarrow\sqrt{x}=\left(0,2\right)\) Vì x nguyên nên x=0
\(\Leftrightarrow A=\frac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}:\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(\Leftrightarrow\frac{1}{1+\sqrt{x}}:\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{1+\sqrt{x}}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{x-9-x+4+\sqrt{x}+2}\)
\(\Leftrightarrow A=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{x-5\sqrt{x}+6}{x-2\sqrt{x}-3}\)